Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/31451
Title: Small non-coding RNAs are altered by short-term sprint interval training in men
Contributor(s): Denham, Joshua  (author); Gray, Adrian J  (author)orcid ; Scott-Hamilton, John  (author)orcid ; Hagstrom, Amanda D  (author)orcid ; Murphy, Aron J  (author)
Publication Date: 2018-04-02
Open Access: Yes
DOI: 10.14814/phy2.13653
Handle Link: https://hdl.handle.net/1959.11/31451
Abstract: Small non-coding RNAs (ncRNAs) are emerging as important molecules for normal biological processes and are deregulated in disease. Exercise training is a powerful therapeutic strategy that prevents cardiometabolic disease and improves cardiorespiratory fitness and performance. Despite the known systemic health benefits of exercise training, the underlying molecular mechanisms are incompletely understood. Recent evidence suggests a role for epigenetic mechanisms, such as microRNAs, but whether other small ncRNAs are modulated by chronic exercise training is unknown. Here, we used small RNA sequencing to explore whether sprint interval training (SIT) controls the abundance of circulating small ncRNAs in human whole blood samples. Ten healthy men performed SIT three times a week for 6 weeks. After training, subjects showed marked improvements in maximal oxygen consumption and cycling performance with concurrent changes to the abundance of diverse species of circulating small ncRNAs (n = 1266 small ncRNAs, n = 13 microRNAs, q < 0.05). Twelve microRNAs altered by 6 weeks of SIT were ubiquitously expressed microRNAs and two regulated important signaling pathways, including p53, thyroid hormone and cell cycle signaling. MicroRNAs altered by 6 weeks of SIT were unchanged after a single session of SIT (n = 24, all P > 0.05). Relative to older individuals, younger subjects exhibited an increased acute SIT-induced fold change in miR-1301-3p (P = 0.02) – a microRNA predicted to target mRNAs involved in alternative splicing, phosphoprotein and chromosomal rearrangement processes (all P < 0.001). Our findings indicate many species of circulating small ncRNAs are modulated by exercise training and that they could control signaling pathways responsible for health benefits achieved from exercise.
Publication Type: Journal Article
Source of Publication: Physiological Reports, 6(7), p. 1-10
Publisher: John Wiley & Sons Ltd
Place of Publication: United Kingdom
ISSN: 2051-817X
Fields of Research (FoR) 2020: 420799 Sports science and exercise not elsewhere classified
Socio-Economic Objective (SEO) 2020: 280120 Expanding knowledge in the physical sciences
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Psychology
School of Science and Technology

Files in This Item:
2 files
File Description SizeFormat 
openpublished/SmallDenhamGrayScottHamiltonHagstromMurphy2018JournalArticle.pdfPublished version967.93 kBAdobe PDF
Download Adobe
View/Open
Show full item record

SCOPUSTM   
Citations

9
checked on Apr 6, 2024

Page view(s)

1,544
checked on Mar 31, 2024

Download(s)

30
checked on Mar 31, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons