Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31451
Title: | Small non-coding RNAs are altered by short-term sprint interval training in men | Contributor(s): | Denham, Joshua (author); Gray, Adrian J (author) ; Scott-Hamilton, John (author) ; Hagstrom, Amanda D (author) ; Murphy, Aron J (author) | Publication Date: | 2018-04-02 | Open Access: | Yes | DOI: | 10.14814/phy2.13653 | Handle Link: | https://hdl.handle.net/1959.11/31451 | Abstract: | Small non-coding RNAs (ncRNAs) are emerging as important molecules for normal biological processes and are deregulated in disease. Exercise training is a powerful therapeutic strategy that prevents cardiometabolic disease and improves cardiorespiratory fitness and performance. Despite the known systemic health benefits of exercise training, the underlying molecular mechanisms are incompletely understood. Recent evidence suggests a role for epigenetic mechanisms, such as microRNAs, but whether other small ncRNAs are modulated by chronic exercise training is unknown. Here, we used small RNA sequencing to explore whether sprint interval training (SIT) controls the abundance of circulating small ncRNAs in human whole blood samples. Ten healthy men performed SIT three times a week for 6 weeks. After training, subjects showed marked improvements in maximal oxygen consumption and cycling performance with concurrent changes to the abundance of diverse species of circulating small ncRNAs (n = 1266 small ncRNAs, n = 13 microRNAs, q < 0.05). Twelve microRNAs altered by 6 weeks of SIT were ubiquitously expressed microRNAs and two regulated important signaling pathways, including p53, thyroid hormone and cell cycle signaling. MicroRNAs altered by 6 weeks of SIT were unchanged after a single session of SIT (n = 24, all P > 0.05). Relative to older individuals, younger subjects exhibited an increased acute SIT-induced fold change in miR-1301-3p (P = 0.02) – a microRNA predicted to target mRNAs involved in alternative splicing, phosphoprotein and chromosomal rearrangement processes (all P < 0.001). Our findings indicate many species of circulating small ncRNAs are modulated by exercise training and that they could control signaling pathways responsible for health benefits achieved from exercise. | Publication Type: | Journal Article | Source of Publication: | Physiological Reports, 6(7), p. 1-10 | Publisher: | John Wiley & Sons Ltd | Place of Publication: | United Kingdom | ISSN: | 2051-817X | Fields of Research (FoR) 2020: | 420799 Sports science and exercise not elsewhere classified | Socio-Economic Objective (SEO) 2020: | 280120 Expanding knowledge in the physical sciences | Peer Reviewed: | Yes | HERDC Category Description: | C1 Refereed Article in a Scholarly Journal |
---|---|
Appears in Collections: | Journal Article School of Psychology School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/SmallDenhamGrayScottHamiltonHagstromMurphy2018JournalArticle.pdf | Published version | 967.93 kB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
9
checked on Jan 4, 2025
Page view(s)
1,544
checked on Mar 31, 2024
Download(s)
30
checked on Mar 31, 2024
This item is licensed under a Creative Commons License