Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/56458
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Welch, Mitchell | en |
dc.contributor.author | Sibanda, Terence Zimazile | en |
dc.contributor.author | De Souza Vilela, Jessica | en |
dc.contributor.author | Kolakshyapati, Manisha | en |
dc.contributor.author | Schneider, Derek | en |
dc.contributor.author | Ruhnke, Isabelle | en |
dc.date.accessioned | 2023-11-02T05:44:12Z | - |
dc.date.available | 2023-11-02T05:44:12Z | - |
dc.date.issued | 2023-03-30 | - |
dc.identifier.citation | Animals, 13(7), p. 1-18 | en |
dc.identifier.issn | 2076-2615 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/56458 | - |
dc.description.abstract | <p>Maintaining the health and welfare of laying hens is key to achieving peak productivity and has become significant for assuring consumer confidence in the industry. Free-range egg production systems represent diverse environments, with a range of challenges that undermine flock performance not experienced in more conventional production systems. These challenges can include increased exposure to parasites and bacterial or viral infection, along with injuries and plumage damage resulting from increased freedom of movement and interaction with flock-mates. The ability to forecast the incidence of these health challenges across the production lifecycle for individual laying hens could result in an opportunity to make significant economic savings. By delivering the opportunity to reduce mortality rates and increase egg laying rates, the implementation of flock monitoring systems can be a viable solution. This study investigates the use of Radio Frequency Identification technologies (RFID) and machine learning to identify production system usage patterns and to forecast the health status for individual hens. Analysis of the underpinning data is presented that focuses on identifying correlations and structure that are significant for explaining the performance of predictive models that are trained on these challenging, highly unbalanced, datasets. A machine learning workflow was developed that incorporates data resampling to overcome the dataset imbalance and the identification/refinement of important data features. The results demonstrate promising performance, with an average 28% of Spotty Liver Disease, 33% round worm, and 33% of tape worm infections correctly predicted at the end of production. The analysis showed that monitoring hens during the early stages of egg production shows similar performance to models trained with data obtained at later periods of egg production. Future work could improve on these initial predictions by incorporating additional data streams to create a more complete view of flock health.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Animals | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | An initial study on the use of machine learning and radio frequency identification data for predicting health outcomes in free-range laying hens | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/ani13071202 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Mitchell | en |
local.contributor.firstname | Terence Zimazile | en |
local.contributor.firstname | Jessica | en |
local.contributor.firstname | Manisha | en |
local.contributor.firstname | Derek | en |
local.contributor.firstname | Isabelle | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | mwelch8@une.edu.au | en |
local.profile.email | tsiband2@une.edu.au | en |
local.profile.email | jdesouza@une.edu.au | en |
local.profile.email | mkolaks2@une.edu.au | en |
local.profile.email | dschnei5@une.edu.au | en |
local.profile.email | iruhnke@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 1202 | en |
local.format.startpage | 1 | en |
local.format.endpage | 18 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 13 | en |
local.identifier.issue | 7 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Welch | en |
local.contributor.lastname | Sibanda | en |
local.contributor.lastname | De Souza Vilela | en |
local.contributor.lastname | Kolakshyapati | en |
local.contributor.lastname | Schneider | en |
local.contributor.lastname | Ruhnke | en |
dc.identifier.staff | une-id:mwelch8 | en |
dc.identifier.staff | une-id:tsiband2 | en |
dc.identifier.staff | une-id:jdesouza | en |
dc.identifier.staff | une-id:mkolaks2 | en |
dc.identifier.staff | une-id:dschnei5 | en |
dc.identifier.staff | une-id:iruhnke | en |
local.profile.orcid | 0000-0003-4220-8734 | en |
local.profile.orcid | 0000-0002-0056-8419 | en |
local.profile.orcid | 0000-0002-5999-0374 | en |
local.profile.orcid | 0000-0002-1897-4175 | en |
local.profile.orcid | 0000-0001-5423-9306 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/56458 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | An initial study on the use of machine learning and radio frequency identification data for predicting health outcomes in free-range laying hens | en |
local.relation.fundingsourcenote | This research was funded by Australian Eggs, grant number 1UN151. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Welch, Mitchell | en |
local.search.author | Sibanda, Terence Zimazile | en |
local.search.author | De Souza Vilela, Jessica | en |
local.search.author | Kolakshyapati, Manisha | en |
local.search.author | Schneider, Derek | en |
local.search.author | Ruhnke, Isabelle | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/969a48be-d966-438f-914d-947bfd322420 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/969a48be-d966-438f-914d-947bfd322420 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/969a48be-d966-438f-914d-947bfd322420 | en |
local.subject.for2020 | 461106 Semi- and unsupervised learning | en |
local.subject.seo2020 | 220499 Information systems, technologies and services not elsewhere classified | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/AnInitialWelchSibandaDeSouzaVilelaKolakshyapatiSchneiderRunhnke2023JournalArticle.pdf | Published Version | 1.93 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
3
checked on Jul 27, 2024
This item is licensed under a Creative Commons License