Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56458
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWelch, Mitchellen
dc.contributor.authorSibanda, Terence Zimazileen
dc.contributor.authorDe Souza Vilela, Jessicaen
dc.contributor.authorKolakshyapati, Manishaen
dc.contributor.authorSchneider, Dereken
dc.contributor.authorRuhnke, Isabelleen
dc.date.accessioned2023-11-02T05:44:12Z-
dc.date.available2023-11-02T05:44:12Z-
dc.date.issued2023-03-30-
dc.identifier.citationAnimals, 13(7), p. 1-18en
dc.identifier.issn2076-2615en
dc.identifier.urihttps://hdl.handle.net/1959.11/56458-
dc.description.abstract<p>Maintaining the health and welfare of laying hens is key to achieving peak productivity and has become significant for assuring consumer confidence in the industry. Free-range egg production systems represent diverse environments, with a range of challenges that undermine flock performance not experienced in more conventional production systems. These challenges can include increased exposure to parasites and bacterial or viral infection, along with injuries and plumage damage resulting from increased freedom of movement and interaction with flock-mates. The ability to forecast the incidence of these health challenges across the production lifecycle for individual laying hens could result in an opportunity to make significant economic savings. By delivering the opportunity to reduce mortality rates and increase egg laying rates, the implementation of flock monitoring systems can be a viable solution. This study investigates the use of Radio Frequency Identification technologies (RFID) and machine learning to identify production system usage patterns and to forecast the health status for individual hens. Analysis of the underpinning data is presented that focuses on identifying correlations and structure that are significant for explaining the performance of predictive models that are trained on these challenging, highly unbalanced, datasets. A machine learning workflow was developed that incorporates data resampling to overcome the dataset imbalance and the identification/refinement of important data features. The results demonstrate promising performance, with an average 28% of Spotty Liver Disease, 33% round worm, and 33% of tape worm infections correctly predicted at the end of production. The analysis showed that monitoring hens during the early stages of egg production shows similar performance to models trained with data obtained at later periods of egg production. Future work could improve on these initial predictions by incorporating additional data streams to create a more complete view of flock health.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofAnimalsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAn initial study on the use of machine learning and radio frequency identification data for predicting health outcomes in free-range laying hensen
dc.typeJournal Articleen
dc.identifier.doi10.3390/ani13071202en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameMitchellen
local.contributor.firstnameTerence Zimazileen
local.contributor.firstnameJessicaen
local.contributor.firstnameManishaen
local.contributor.firstnameDereken
local.contributor.firstnameIsabelleen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailmwelch8@une.edu.auen
local.profile.emailtsiband2@une.edu.auen
local.profile.emailjdesouza@une.edu.auen
local.profile.emailmkolaks2@une.edu.auen
local.profile.emaildschnei5@une.edu.auen
local.profile.emailiruhnke@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber1202en
local.format.startpage1en
local.format.endpage18en
local.peerreviewedYesen
local.identifier.volume13en
local.identifier.issue7en
local.access.fulltextYesen
local.contributor.lastnameWelchen
local.contributor.lastnameSibandaen
local.contributor.lastnameDe Souza Vilelaen
local.contributor.lastnameKolakshyapatien
local.contributor.lastnameSchneideren
local.contributor.lastnameRuhnkeen
dc.identifier.staffune-id:mwelch8en
dc.identifier.staffune-id:tsiband2en
dc.identifier.staffune-id:jdesouzaen
dc.identifier.staffune-id:mkolaks2en
dc.identifier.staffune-id:dschnei5en
dc.identifier.staffune-id:iruhnkeen
local.profile.orcid0000-0003-4220-8734en
local.profile.orcid0000-0002-0056-8419en
local.profile.orcid0000-0002-5999-0374en
local.profile.orcid0000-0002-1897-4175en
local.profile.orcid0000-0001-5423-9306en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56458en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn initial study on the use of machine learning and radio frequency identification data for predicting health outcomes in free-range laying hensen
local.relation.fundingsourcenoteThis research was funded by Australian Eggs, grant number 1UN151.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorWelch, Mitchellen
local.search.authorSibanda, Terence Zimazileen
local.search.authorDe Souza Vilela, Jessicaen
local.search.authorKolakshyapati, Manishaen
local.search.authorSchneider, Dereken
local.search.authorRuhnke, Isabelleen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/969a48be-d966-438f-914d-947bfd322420en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/969a48be-d966-438f-914d-947bfd322420en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/969a48be-d966-438f-914d-947bfd322420en
local.subject.for2020461106 Semi- and unsupervised learningen
local.subject.seo2020220499 Information systems, technologies and services not elsewhere classifieden
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Environmental and Rural Science
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/AnInitialWelchSibandaDeSouzaVilelaKolakshyapatiSchneiderRunhnke2023JournalArticle.pdfPublished Version1.93 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

3
checked on Jul 27, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons