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Simple Summary: Maintaining the health and welfare of laying hens is essential to ensure optimal
productivity and to build consumer confidence. Free-range egg production systems present unique
challenges, including increased exposure to parasites, infection, and injury. The ability to predict
and prevent these health problems translates into significant financial savings. This study examines
the use of Radio Frequency Identification (RFID) to measure the movement behavior of laying hens
and machine learning to forecast individual hens’ health status. The machine learning workflow
incorporates data resampling and important feature identification to overcome the highly unbalanced
dataset. Results indicate an average of 28% Spotty Liver Disease, 33% round worm, and 33%
tape worm infection correctly predicted by the end of the production period. The monitoring of
hens’ health during the early laying period can lead to similar performances in predicting infections
compared to models trained with peak laying data. Future research can improve the initial predictions
by incorporating additional data streams to provide a more comprehensive view of flock health.

Abstract: Maintaining the health and welfare of laying hens is key to achieving peak productivity
and has become significant for assuring consumer confidence in the industry. Free-range egg pro-
duction systems represent diverse environments, with a range of challenges that undermine flock
performance not experienced in more conventional production systems. These challenges can include
increased exposure to parasites and bacterial or viral infection, along with injuries and plumage
damage resulting from increased freedom of movement and interaction with flock-mates. The ability
to forecast the incidence of these health challenges across the production lifecycle for individual
laying hens could result in an opportunity to make significant economic savings. By delivering the
opportunity to reduce mortality rates and increase egg laying rates, the implementation of flock
monitoring systems can be a viable solution. This study investigates the use of Radio Frequency Iden-
tification technologies (RFID) and machine learning to identify production system usage patterns and
to forecast the health status for individual hens. Analysis of the underpinning data is presented that
focuses on identifying correlations and structure that are significant for explaining the performance
of predictive models that are trained on these challenging, highly unbalanced, datasets. A machine
learning workflow was developed that incorporates data resampling to overcome the dataset imbal-
ance and the identification/refinement of important data features. The results demonstrate promising
performance, with an average 28% of Spotty Liver Disease, 33% round worm, and 33% of tape worm
infections correctly predicted at the end of production. The analysis showed that monitoring hens
during the early stages of egg production shows similar performance to models trained with data
obtained at later periods of egg production. Future work could improve on these initial predictions
by incorporating additional data streams to create a more complete view of flock health.
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1. Introduction

Animal health and welfare plays a key role in both optimization of livestock pro-
duction and the perceptions of consumers that are driving the increasing demand for
ethically-sourced agriculture products [1]. This consumer drive has had a significant im-
pact on the poultry industry, leading to an increased demand for free-range eggs, and
a subsequent response by the industry towards production systems that allow hens to
experience greater mobility and freedom to move. Free-range production systems allow
hens access to open ranges, floor spaces, dust bathing material, aviary tiers, nest boxes, and
water lines [2,3]. While the adoption of such production systems addresses the concerns of
consumers regarding animal welfare, they also expose the hens to a range of additional
health challenges that must be carefully managed to avoid undermining productivity [4–6].
This diverse environment (coupled with individual preferences) can expose individual
hens and sub-populations to various levels of biosecurity risks, inter-hen stressors, and
collision damage [7]. Typical welfare concerns that can be seen within free-range flocks,
which are associated with production losses, include diseases such as Spotty Liver Disease
(SLD) [8], Fatty Liver Hemorrhagic Syndrome (FLHS) [9], and intestinal parasites such
as Ascaridia galli (A. galli) [10] and various cestodes [11], along with injuries related to
movement and social activities such as plumage or beak damage [12]. While changes
in behavior and levels of activity can be observed accompanying the aforementioned
conditions and parasites, there have been relatively few attempts to develop monitoring
approaches capable of predicting the onset of health issues based around individual-level
behavioural monitoring.

Monitoring the health of laying hens has been traditionally achieved at the flock-level,
using the data derived from the production system such as average number of eggs per
hen, average weights, average feed intake, average water intake, and average egg quality
measures. These flock-level metrics have been used to model egg production curves [13],
with studies such as [14] applying machine learning algorithms to detect early changes
that indicate future production losses. Colles et al. [15] have extended the idea of early
detection by demonstrating the use of computer vision and optical flow across the flock
movement for the early warning of SLD and presence of the causative bacteria. Similarly,
the combination of audio sensing and machine learning has been applied to develop a
workflow capable of successfully identifying abnormal sounds linked with disease in
broiler production [16]. These approaches provide a high-level view for flock management
but do not capture details required for predictions at the individual hen level or vulnerable
flock sub-populations [17]. Machine learning has seen wide use in animal production
studies due to the availability of inexpensive sensing hardware and large data sets. It has
been successfully applied to improve welfare and production outcomes, and continues to
be a driver for innovation across the sector [18,19].

Radio Frequency Identification (RFID) technology has been widely adopted as a viable
approach for identifying and tracking the movement of individual animals in agricultural
production systems, both within scientific studies and commercial systems [20–27]. The
low cost and the small size of on-animal devices makes this technology a versatile solution
for investigating how animals access resources and use areas within a production system.
RFID technology of this type has been used in a number of studies to track the weight,
feeding behavior, and oviposition of hens using specialized equipment within aviary
systems and feed chains [28,29]. This work has been applied to free-range production
systems [30–32] for monitoring range usage, along with movements within feeding the
system by deploying a comprehensive system of RFID receivers and antennas throughout
the open range and indoor housing. This concept was extended in [30], where unsupervised
machine learning approaches were applied to investigate the existence of sub-populations
based upon high-level production system usage patterns of free-range hens.

This study builds upon this initial body of work by applying a supervised machine
learning algorithm to predict the presence of diseases SLD and FLHS, the parasites A. galli
and cestodes, and injuries such as beak, plumage, or keel bone damage based upon range
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and aviary usage patterns across the production lifecycle of RFID-tagged free-range hens.
This combination of RFID technology and machine learning for individual-level forecasting
of health conditions in laying hens represents a novel application of the technologies aimed
at improving production through early intervention. The remaining sections present an
analysis of the underlining dataset, aimed at understanding its suitability for training
machine learning classifiers, a machine learning workflow that incorporates a dataset
balancing algorithm, and evaluation of a classifier algorithm trained on the RFID data for
predicting the presence of altered hen movement, which serves as an indicator for these
aforementioned health conditions.

2. Materials and Methods
2.1. Data Collection and Processing

Data were collected from five commercial free-range flocks of Lohmann Brown laying
hens monitored from December 2016 until February 2019. Each flock contained 40,000 hens,
from which 3125 hens were randomly selected and fitted with leg bands containing Monza
R6 UHF RFID transponders (supplied by Impinj, Seattle, WA, USA). This resulted in
15,625 hens that were initially monitored across the five flocks. The housing system was
furnished with a 3-tier aviary system that was instrumented with custom-made antennae
installed laterally along the entry of the nest boxes, the feeder chain systems (upper and
lower feeders), and on the partitioned range section. The full details on the layout and
antenna configuration are presented in Sibanda et al., 2019 [33]. In brief, to organize and
categorize the movement activities of hens, the number of hen visits was determined by
counting the number of antennae registrations detected for at least 10 s, and the duration
spent on each antenna was summed up to calculate the time spent in nest boxes, feeders
and outdoor range each day. Utilizing the RFID data on hen movements, we computed the
mean daily durations that individual hens spent on different resources such as the upper
feeder, lower feeder, nest boxes, and range. These calculations were conducted for four
specific laying periods, namely the pre-laying (PRL) period (18–22 weeks), peak laying (PL)
period (23–33 weeks), late laying (LL) period (34–54 weeks), and end of laying (EL) period
(55–74 weeks), to capture variations in hen behavior throughout their production life. This
produced a feature data set that contained 16 features for each hen surviving until the end
of each flock’s production life. Subsequently, we utilized these features as predictors in
our machine learning models to accurately classify and predict the health conditions of the
hens based on their individual data.

At 74 weeks of age, all flocks were depopulated, and the remaining tagged hens were
necropsied according to the procedure outlined in [34] to assess the health and welfare
conditions. From this assessment, complete datasets for 9362 hens were available (i.e., due
to lost/malfunctioning tags and flock mortality) and the conditions chosen for the responses
(targets) used for predictive modelling are outlined in Table 1. Response variables were
converted from their original (multi-class) domains into binary data outputs to simplify
the modelling process and alleviate the level of class imbalance (for example, the three
keel bone damage classes outlined in [34] were simplified to two classes, with scores of
1 and 2 merged to a score of 1). The resulting dataset contained levels of class imbalance
that varied across the responses, and the ratios of the class imbalances are presented
in Section 3.2.

All data processing and analysis was completed using Matlab2019a [28] and all data
collection procedures carried out in this study were approved by the University of New
England’s Animal Ethics Committee (AEC 16-087).



Animals 2023, 13, 1202 4 of 17

Table 1. The definition of the response/target variables and classes used for the machine learn-
ing models.

Target Response Value Definition

Keel bone damage 0 = No damage, 1 = signs of damage ranging from minor to severe fractures
Fatty Liver Hemorrhagic Syndrome 0 = Normal physiological liver, 1 = evidence of Fatty Liver Hemorrhagic Syndrome

Spotty Liver Disease 0 = Normal physiological liver, 1 = evidence of Spotty Liver Disease
Presence of Ascaridia galli 0 = Not present, 1 = Present

Presence of Cestodes 0 = Not present, 1 = Present
Egg follicle production 0 = No active follicles or follicles in regression, 1 = Full follicle production

Beak damage 0 = Damaged beak, 1 = No damage
Comb or wattle damage 0 = Damaged comb or wattle, 1 = No damage

2.2. Principal Component Analysis of the Feature Set

In order to understand the structure and relationship of correlations within the dataset,
Principal Component Analysis (PCA) was applied to the feature set outlined in Section 2.1.
Z-Score normalization was applied to each of the features to remove the effect of scale
from the analysis. Principal Component Analysis is a common dimensionality reduction
technique that can be applied to complex, high-dimensional dataset to generate a more
easily interpreted low-dimension representation. PCA works by projecting data set onto
lower-dimensional hyperplanes so that the largest proportion of the variance is preserved.
This process is carried out iteratively to calculate projections for the desired number
of principal components, where each subsequent hyperplane projected at right angles
to a previous hyperplane [35] (Jolliffe, 2003). The creation of this lower dimensional
representation can help uncover complex correlations between features by analyzing how
each feature maps to the principal component hyperplanes. The PCA implementation used
in this study was provided by the MATLAB Statistics and Machine Learning toolbox [36].
The resulting principal component coefficients and scores were then plotted on a biplot
to provide a visual representation of the correlations within the data. The biplot provides
a two-dimensional representation of the data with vectors plotted (one for each feature)
representing the weighting that each feature has on the first two principal components. The
distance from the origin provides a measure of the feature’s contribution to the variance
within a principal component analysis (i.e., the larger the vector, the more influence the
feature has on the principal component). The angles between the vectors represent the
correlations between the corresponding features. Small angles (i.e., θ ≈ 0◦) between two
vectors indicate that the corresponding features are likely to be positively correlated. If the
vectors meet at right angles (i.e., θ ≈ 90◦), the features are likely uncorrelated. If the vectors
have large angles (i.e., θ ≈ 180◦) between them, they are likely to be negatively correlated.

2.3. Unbalanced Data and Minority Analysis

One of the key challenges with the dataset is the level of imbalance between the
positive and negative examples for the set of response variables. Unbalanced datasets
occur when some classes in the distribution significantly dominate others. This makes
training difficult because most binary classification algorithms assume an equal cost for
misclassification on both classes, leading the learner to correctly classify almost all of the
majority class at the expense of misclassifying the most of the minority class [37,38]. As
mentioned in Section 2.1, all response variables have been simplified to consist of binary
classes, however, it was evident there is a significant imbalance between the minority and
majority classes. The approach outlined by [39] was used to analyze the nature of the class
imbalance, whereby each data point was classified as safe, borderline, rare, or outlier based
on achieving ratios of 5:0/4:1, 3:2/2:3, 1:4, and 0:5, respectively, for the minority-to-majority
point ratio across the five nearest neighbors. In this scheme, a safe data point is likely to be
learned by the model, whereas an outlier data point is unlikely to be learned (especially
if not represented in the training partition). Borderline and rare data points will result in
mixed performance depending on the nature of the model. The proportion of each data
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point type for each response variable was then plotted for comparison across the responses.
To visualize the dataset and further demonstrate the nature of the class imbalance, t-
Distributed Stochastic Neighbor Embedding (t-SNE) run with default parameters [40] was
applied to the data to produce a two-dimensional representation of the 16-feature dataset.
The resulting two-dimensional dataset was then plotted with classes denoted using visual
markers to visually assess the relationship between the minority and majority points.

2.4. Machine Learning Workflow

To investigate the application of machine learning to the RFID data, the random forest
machine learning algorithm was applied to the dataset [41]. The random forest is an
ensemble machine learning algorithm that aggregates its classifications from the results
of multiple diverse decision trees (referred to as weak learners) that are constructed by
selecting the features used within each split to form a random subset of all training features.
The individual weak learners are not very accurate at correctly classifying outcomes on
their own, however when their outcomes (i.e., the probability of belonging to a given
class) are averaged, they form a more accurate classifier. The random forest algorithm is
well-suited to multi-dimensional classification problems and has been successfully applied
across bioinformatics datasets for a range of classification tasks [42,43]. It represents the
natural choice for this study as it can handle large and noisy datasets without overfitting,
is robust when outliers are present in training data, provides a robust ability to measure
feature importance, and is capable of modelling complex non-linear relationships between
the input features and the target outputs [44].

The random forest algorithm has several hyper-parameters that were optimized
through cross-validation to ensure that the model is fitted to the training data. Within each
trial of the machine learning workflow, the number of decision trees (i.e., the size of the
ensemble), along with the depth and number of decision splits within the individual trees,
was optimized to fit the model to the training set. The number of predictors that were
randomly selected for each decision split within each individual decision tree was fixed at
4 (the square-root of the number of features used for training [41]). Feature selection was
not performed, and the random forest models were trained using all 16 available features.
This allowed for the analysis of feature importance by applying the permutation method,
where the values for each feature are permutated and the mean decrease in classification
accuracy were used to compare the importance of the features for the classification task [45].
In this approach, a larger mean decrease in accuracy indicates a higher level of importance
for the classification task. This process was completed for each feature and provided an
indication of the features that had the highest impact on the performance of the classifier.

The workflow used to construct the machine learning models is outlined in Figure 1.
It consisted of four stages:

Stage 1: Division of the base dataset into training/validation (75%) and testing (25%)
sets using stratified random sampling. The training/validation set was used to train the
random forest algorithm and hyper-parameter optimization, while the testing set was used
for an out-of-sample test for the predictive power of each model. The datasets were z-score
normalized after the separation into these respective sets to present information leaking
from the test set into the training set.

Stage 2: Balancing the training set to ensure that the model achieved the most balanced
sensitivity to the minority and majority classes. In this investigation, the kernel-smoothed
bootstrap sampling approach [46] was adopted for this purpose.

Stage 3: Training and validation. This involved systematically testing parameter
configurations to find the configuration with the highest performance when tested against
the validation set.

Stage 4: Testing against the out-of-sample testing set put aside during stage 1. This
provided a solid indication of the predictive performance that could be achieved on future
(novel) data points. In order to assess the performance, the area under the ROC curve,
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accuracy (Equation (1)), sensitivity (Equation (2)), and precision (Equation (3)) for the
classification of the minority class were calculated.

Predictive Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

where TP is the number of true positives (actual positives classified as positives), TN is the
number of true negatives (actual negatives classified negatives), FP is the number of false
positives (actual negatives classified as positives), and FN false negatives (actual positives
that are classified as negatives). Boxplots were generated to present the distributions of
each performance variable with the bottom and top box edges indicating the 25th and 75th
percentiles, respectively, and the red center lines representing the median. Outliers (denoted
by red crosses) are defined as any value that is more than 1.5 times the interquartile range
outside the box edges.
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Figure 1. The outline for the machine learning workflow adopted demonstrating the data partitioning
and minority class re-sampling process. The blue areas denote processes in the workflow. The
Kernel-Smoothed bootstrap sampling was performed after the testing set was partitioned from the
train/validate set to ensure a complete out-of-sample test.

This workflow was completed across 1000 trials using different randomized divi-
sions (in stage 1) within each trial to provide a distribution for each of the performance
measures for each of the responses tested. Random forest models were also created for
random permutations of each response variable within each trial. This provided a random-
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ized control data set that maintained the same ratio of minority-to-majority examples so
that the performance of classifiers trained on the real response data could be compared
against that of the random response (i.e., the random response should have an expected
AUC ≈ 0.5). The distributions of AUC performance metrics for the classifiers trained on
the random permuted responses and the real responses were compared using a two-sample
Kolmogorov–Smirnov test with rejection of the null hypothesis (that the two distributions
are the same) tested at the 5% significance level. This provided a method to assess the
performance of the models in marginal cases where the class imbalance made training the
models almost impossible and performance was poor.

3. Results
3.1. PCA Feature Analysis

The initial study of the underlying correlations within the PCA analysis of the feature
set is presented in Figure 2. The biplot in Figure 2 (left) shows the contributions of the
16 features to the variance in the first two principal components. This plot shows that
the mean durations for the given zones in the system were correlated across the different
production periods. For example, the small angles between the vectors representing the
mean durations spent at the upper feed (UF) across the PRL, LL, EL, and PL indicate that
they are all correlated. This same trend is evident for the nest box (NB), range (RNG),
and lower feeder (LF). The UF mean durations were negatively correlated with the mean
durations for the RNG and LF (indicated by the large angles between the respective set
of vectors). Interestingly, there was a correlation between LF mean durations and the
RNG mean durations. These results indicate that there may be a relationship between the
times spent within these three zones in the production system. The mean time spent in the
NB was not correlated with any other mean durations, indicating that time spent in this
location was independent of that spent in other areas. Figure 2 (right) provides a plot of the
explained variance across the first ten principal components. This plot shows that the first
two components (presented in the biplot in Figure 2 (left)) accounted for 52.0% of the total
variance within the dataset (37.1% in the first component alone) and the first 10 principal
components accounted for 93.7% of the total variance within the data.
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Figure 2. (Left) Principal Component Analysis (PCA) across all 16 features visualized using a
biplot normalized to arbitrary units. UF, LF, RNG, and NB notation refers to the mean durations
spent at the upper feeder, lower feeder, range, and nest box, respectively, for each of the denoted
productions periods (pre-lay = PRL, peak lay = PL, late lay = LL, and end of lay = EL). (Right) A
Pareto chart plotting the proportion of explained variance within each component. The blue line
plots the cumulative variance across the components from left to right.
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3.2. Unbalanced Data and Minority Analysis

The results from the minority analysis are presented in Figure 3, providing insight
into the suitability of the dataset to train predictive classifiers for the tested responses. In
Figure 3 (left), the ratio of the minority-to-majority class data points is shown for each
response. These ratios ranged from a split of 49:51% for the presence of keel bone fractures
right down to 0.7:99.3% for the presence of beak damage, where a significant class imbalance
is present. Figure 3 (right) plots the proportion of the minority class data points that fit into
each of the nearest neighbor classes (outlier, rare, borderline, and safe), presented in the
order specified by the minority-to-majority ratio. Only the two least imbalanced responses
(presence of keel bone fractures and presence of cestodes) contain any data points that
can be classified as safe. These two responses also have relatively small proportions of
outlier points (3% and 7%, respectively) in contrast to the most imbalanced data class (beak
damage), which consists of 91% outliers.
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space, which is reflective of the large proportion of rare points. Figure 4 (right) demon-
strates a largely outlier dataset where the minority points are not only acutely outnum-
bered but also dispersed through the dataset, with very few that have same-class neigh-
bors. 

Figure 3. (Left) the ratio of minority-to-majority class samples for each target. (Right) the pro-
portion of data points in the minority class that fall into the outlier, rare, borderline, and safe
neighbor categories.

The effect of the class imbalance and the large proportions of outlier minority data
points are demonstrated visually in Figure 4, which plots the two-dimensional t-SNE
projection of the dataset with the responses for keel bone fractures (left) and beak damage
(right) (i.e., the most imbalanced and least imbalanced responses). In the keel bone fractures
response data, Figure 4 (left), it is evident that there are some areas where minority class
data points are concentrated, corresponding to the safe data points within the set. There is
still significant dispersion of minority class data points through the entire feature space,
which is reflective of the large proportion of rare points. Figure 4 (right) demonstrates a
largely outlier dataset where the minority points are not only acutely outnumbered but
also dispersed through the dataset, with very few that have same-class neighbors.
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3.3. Classifier Performance for Predicting the Health Status of Hens

The raw classifier performance results are presented in Table 2, where the mean
sensitivity, precision, accuracy, and AUC values for each response (and each class where
relevant) are reported along with the standard deviation for each respective measure. These
results are elaborated on in Figure 5, where the distributions for the AUC, accuracy along
with the sensitivity, and precision for the minority class across each respective response
are represented using box plots. The results demonstrate that models for predicting the
presence of SLD, A. galli, and cestodes performed best with mean AUC values of 0.61, 0.60
and 0.58 respectively. There was a relatively large difference to the next-highest performing
model, approaching a very marginal performance close to an AUC of 0.5. These models
achieved sensitivities of 0.28, 0.33, and 0.33 for the minority classes, respectively, indicating
that they were able to detect about 1/3 of the cases (for these responses, the minority class
indicates the presence of the disease or infestation). The mean precisions for these responses
varied more widely, with mean values of 0.14, 0.28, and 0.49, respectively. This indicates
that, of the data points classified as positive for the SLD/parasite infestation, 14%, 28%,
and 48% of them correspond to true positives, respectively. Sensitivity and precision scores
for the other responses largely reflect the class imbalance, the majority classes achieve
relatively high scores for both, and the minority classes have marginal performance. The
net results were reflected in the marginal AUC scores that approach those of a chance
model. While the accuracy results have been reported, they needed to be interpreted with
care as the 25% testing partitions one which performance testing is based has the same
minority:majority class ratio as the original dataset (see Figure 1), introducing a significant
imbalance into the calculation. This issue can be clearly seen in performance results for
beak damage where a mean accuracy of 0.98 is achieved, however only mean sensitivity
of 0.06 with a precision of 0.02 was seen for this minority class. The AUC value for beak
damage, which is a much more robust measure in the presence of class imbalance, was only
0.48, and provides a much better indication of this response/model’s overall performance.
All AUC distributions presented in Figure 5A were significantly different from the AUC
distributions of models trained on random permutations of the responses (p ≈ 0), except for
the egg follicle response (test-statistic = 0.06, p = 0.06). This indicates that its performance is
equivalent to a chance classifier.
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Figure 5. Performance distributions plotted as boxplots for each response variable. Part (A) plots the
area under the ROC curve (AUC), with the red dotted line marking the performance of a random-
chance classifier. Part (B) plots the accuracy for each model. Part (C) plots the sensitivity, and part
(D) plots the precision for the minority class within each response. The responses are ordered from
left to right by descending mean AUC.
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Table 2. Performance results for the random forest classifiers trained on each response. The mean
sensitivity, precision, accuracy, and Area Under the Curve (AUC) (± standard deviation) are presented
along with the number (N) of data points in each class.

Response Class N Sensitivity Precision Accuracy AUC

Keel bone fractures
0 4605 0.20 ± 0.02 0.55 ± 0.02

0.52 ± 0.01 0.51 ± 0.011 4757 0.84 ± 0.02 0.52 ± 0.00

Egg follicles 0 670 0.08 ± 0.02 0.10 ± 0.02
0.88 ± 0.01 0.50 ± 0.021 8686 0.94 ± 0.01 0.93 ± 0.00

Cestodes
0 5693 0.78 ± 0.02 0.64 ± 0.01

0.60 ± 0.01 0.58 ± 0.011 3669 0.33 ± 0.02 0.49 ± 0.02

Ascaridia galli 0 8136 0.87 ± 0.01 0.90 ± 0.02
0.80 ± 0.01 0.60 ± 0.021 1226 0.33 ± 0.02 0.28 ± 0.00

Spotty Liver Disease 0 8651 0.86 ± 0.01 0.94 ± 0.00
0.82 ± 0.01 0.61 ± 0.021 711 0.28 ± 0.03 0.14 ± 0.01

Fatty Liver Hemorrhagic
Syndrome

0 7803 0.90 ± 0.01 0.84 ± 0.00
0.77 ± 0.01 0.53 ± 0.011 1559 0.15 ± 0.02 0.22 ± 0.02

Beak damage 0 68 0.06 ± 0.05 0.02 ± 0.02
0.98 ± 0.00 0.48 ± 0.071 9294 0.98 ± 0.00 0.99 ± 0.00

Comb or wattle damage 0 9129 0.94 ± 0.01 0.98 ± 0.00
0.92 ± 0.01 0.54 ± 0.031 233 0.11 ± 0.04 0.05 ± 0.02

Figure 6 presents the distributions of the feature importance (mean decrease in accu-
racy) for 16 features used to train the top 3 performing responses (SLD, A. galli, and cestode
infestation) by AUC. The distributions were ranked according to their mean and showed
that the pre-laying (PRL) mean durations for the upper feeder (UF) and range (RNG) rank
first or second across all three responses, with MDAs ≈ 6–7%. The NB (PRL) feature ranked
3rd for SLD and A. galli responses and dropped to 9th for the cestodes response. The UF
(EL) and UF (LL) features rank in the top 6 of sets for all three responses. Based on these
observations, new sets of models were generated using only four PRL features (UF, LF, NB,
RNG) as predictors to assess the ability of the pre-laying mean durations alone to predict
the responses. The resulting performance distributions for these models are presented in
Figure 7. The results presented for the reduced feature-set models reflect those presented
in Figure 5, with the SLD, A. galli, and cestodes responses achieving the highest perfor-
mance (by mean AUC), ranging down to marginal results for the remaining responses
with mean AUC values below 0.5. The distributions for mean sensitivity (minority class)
achieved of three top performing models were slightly higher than those trained on the
full feature set, while their mean precision distributions were slightly lower, contributing
to a slightly lower overall performance. Figure 8 plots the distributions of the feature
importance for the three top-performing responses trained on the PRL features. These
results reflect those in Figure 6, with the UF and RNG features ranking first and second for
the responses shown. The MDA distributions for the UF and RNG features are shifted up
slightly (compared to the distributions in Figure 6), with median values above 7% for the
SLD and A. galli responses.
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with the highest AUC values—(left) Spotty Liver Disease, (middle) Ascaridia galli, and (right) Cestode
infections. The responses have been classified according to the location of the hen on either the range
(RNG), upper feeder (UF), lower feeder (LF), or nest box (NB) during pre-lay (PRL), peak lay (PL),
late lay (LL), or end of lay (EL).
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Figure 7. Performance distributions plotted as boxplots for each model using only the PRL features.
Part (A) plots the area under the ROC curve (AUC), with the red dotted line marking the performance
of a random-chance classifier. Part (B) plots the accuracy for each model. Part (C) plots the sensitivity,
and part (D) plots the precision for the minority class within each response. The responses are
ordered from left to right by descending mean AUC.
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late lay (LL), or end of lay (EL).

4. Discussion

The results demonstrate mixed performance across the responses tested, with the
highest performing models only achieving a relatively modest overall predictive ability.
The three best performing responses in this study (SLD, A. galli, cestodes) have all been
shown in previous studies to be strongly linked to access to soil and litter [10,11,47].
From this study, it is evident that there is a modest degree of predictive ability within the
range/aviary usage patterns that are described by the mean durations. The correlations
presented through the PCA (Figure 2) and evidencing through the feature importance
results are consistent with the findings in previous work [30,33]. This may indicate that
sub-populations within the flocks, consistent of hens that frequently use the range and
hens that rarely access the range, are also using different spaces within the hen house, e.g.,
preferring to use the upper feeder versus the lower feeder.

The mean durations spent on the range and at the upper feeder were the top two
ranked features used for prediction in all three top performing responses and the PCA
analysis demonstrated that these variables are negatively correlated across the dataset (and
range access is correlated with usage of the lower feeder). This indicates that hens that
spent a higher mean duration on the range (i.e., with access to soil and litter) spend less
time at the upper feeder (away from soil and litter) and vice-versa, resulting in a usage
profile across the production lifecycle with a modest level of predictive power. The results
in Figure 7A indicate that most of this predictive capability is present within the mean
durations from monitoring within the pre-laying period. This is unsurprising, given the
observation that the mean durations for specific locations (RNG, UF, LF, and NB) within
the system are highly correlated across the monitoring time periods (PRL, PL, LL, and
EL). The results demonstrate that monitoring in the early production period provides
sufficient sensitivity to identify 1/3 of the cases of hens affected by SLD, A. galli infection,
or cestode infestations that were ultimately present at the end of the flock (with varying
levels of precision). While it is disappointing to observe that monitoring in subsequent
production periods does not appear to greatly improve model performance, this introduces
the possibility of early and targeted intervention, where preventative treatments applied to
individuals or groups with high proportions of birds predicted to be at risk can be adopted
to boost the productivity of the flock based upon monitoring in the pre-laying period.
While in this study the precision for these three responses was low (14%, 28% and 49%
respectively), the cost of applying preventative treatments to the hens detected as false
positives may be outweighed by the ultimate production increase achieved over the life of
the flock.

The remaining responses (FLHS, keel bone fractures, egg follicle production, comb
or wattle damage, and beak damage) all demonstrated marginal performance over a
chance classifier. The comb or wattle damage and beak damage responses were highly
imbalanced, with their minority classes comprising just 2.5% and 0.7%, respectively. This
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level of class imbalance coupled with large proportion of outlier minority data point is
difficult to overcome to effectively train a machine learning classifier, resulting in poor
performance. The effect of the outlier minority data points (a demonstration of the small
disjuncts described by [39] is illustrated in Figure 4 (right), where minority data points for
the beak damage response are sparse across the data space and removal of any individual
point (i.e., for the out-of-sample test) leaves only majority points behind the region. This
eliminates any possibility of training a classifier to recognize the presence of minority data
within this region. The responses for FLS and egg follicle production had similar ratios of
imbalance to A. galli and SLD, respectively. Their predictive performance was lower (e.g.,
AUC and sensitivity to the minority classes), indicating a lack of predictive ability within
the mean duration features in the dataset, rather than an effect of the class imbalance. This
effect is further demonstrated by the egg follicle production response higher proportion of
outlier minority points compared to the better performing responses.

The minority analysis presented within this study provides an elegant demonstration
of the role of both minority/majority class ratios and the nature of data within the classes.
As the ratio of minority-to-majority class points grows, the general trend shows that the
model performance increases, however, this trend is strongly influenced by the proportions
of the safe, borderline, rare and outlier points that make up the minority class. Recall that
the borderline and rare data points have mixed performance, as they indicate areas within
the dataspace where data points of both classes are mixed. Therefore, in order for model
performance to be high, more balanced datasets need to have higher proportions of safe
points. This is because the absolute number of data points exposed to the lower performing
classes of points will be higher (e.g., a more balanced dataset has more points in the minority
class). This principle is demonstrated in the difference between performance between
the keel bone fracture response (which is almost balanced 49:51) and cestode infestation
response (which has a ratio of 39:61). Inspection of the minority class proportions in
Figure 3 (right) reveals that although the keel bone fracture response is 10% more balanced
overall, it has only 3% more safe data points (7% vs. 4% for the keel bone fractures and
cestodes, respectively). This results in a larger absolute number of minority data points
falling into the borderline, rare and outlier classes, where classification for performance
is lower. This is subsequently reflected in the overall performance, where the cestode
infestation response achieves a higher mean AUC and mean sensitivity while maintaining
a similar mean precision to the keel bone fracture response.

One of the key shortcomings present within the structure of the data is the measure-
ment of the response variables at the end of production (i.e., through necropsy). This
means that there is no indication within the data, at what time point during the 74-week
production period a particular hen became affected by any of the health conditions de-
scribed through the response variables. This is a likely source of noise within the dataset,
introducing a number of different feeder/range/nest box usage patterns across the mea-
surement periods for a given response based on when a specific bird becomes affected by
a condition. Further investigation is needed to produce a more refined training set that
captures the usage patterns immediately prior to the diagnosis of a response. Predictive
performance may also be further improved by the incorporation of additional data (e.g.,
weather climatic conditions, aggregate feed intake, and egg production measures from the
production system). These measures have the potential to provide a more complete view
of flock health in combination with the individual-level system usage pattern collected
through RFID technology. This study is based upon the random forest ensemble algorithm
with a robust classifier that performs well on a wide variety of datasets and is resistant to
overfitting data. The trained models are complex (e.g., ensembles are constructed within
multiple diverse weak learner models), especially when trained on the full feature set.
Future studies should investigate the use of less complex algorithms and the implementa-
tion of a complete feature selection component within the workflow. Approaches such as
Recursive Feature Elimination [48] and Infinite Feature Selection [49] provide examples of
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supervised and unsupervised approaches that could be applied to simplify the feature set
and train robust, simplified models using other machine learning approaches.

5. Conclusions

The study presents a novel analysis using machine learning to predict the presence of a
set of health parameters from RFID data measuring the average durations spent within key
locations in the production system. The key findings indicate that the presence of SLD, A.
galli, and cestodes may be predicted based upon flock monitoring in the early (pre-laying)
period of the production cycle. However, the predictive power is modest, and additional
analysis (such as the incorporation of additional data streams) is needed to improve the
approach for a practical system. Range access and upper-feeder was shown to be key
predictors for SLD, A. galli, and cestodes infections. The minority analysis demonstrated a
significant imbalance with many of the minority points isolated within the feature space,
making it difficult to fit an effective model for these responses. Additional minority
class data points would help solve this problem by increasing the density and number
of safe minority points. The ability to predict the presence of other health conditions
was limited and no practical outcomes were evident. The machine learning workflow,
incorporating analysis of the class imbalance, the application of a sampling algorithm, and
the refinement of predictive data features provides a sound model for understating the data
and the performance outcomes achieved. This approach can be applied in future studies
to understand the nature and effects of class imbalance on machine learning performance.
Overall, the study provides a demonstration of the potential for RFID movement data
based on individual animals and machine learning approaches to predict health outcomes.
We believe that our study lays a foundation for future research in this area and that our
findings can inform the development of more accurate and effective health monitoring
methods for laying hens.
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