Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/45542
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShepley, Andrewen
dc.contributor.authorFalzon, Gregen
dc.contributor.authorLawson, Christopheren
dc.contributor.authorMeek, Paulen
dc.contributor.authorKwan, Paulen
dc.date.accessioned2022-02-28T22:32:35Z-
dc.date.available2022-02-28T22:32:35Z-
dc.date.issued2021-04-
dc.identifier.citationSensors, 21(8), p. 1-17en
dc.identifier.issn1424-8220en
dc.identifier.urihttps://hdl.handle.net/1959.11/45542-
dc.description.abstract<p>Image data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize access to deep learning technologies by providing an easy-to-use software application allowing non-technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists with the ability to train customised models using publicly available images and/or their own images without specific technical expertise. Auto-annotation and annotation editing functionalities minimize the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and object detection, allowing ecologists to access deep learning technologies usually only available to computer scientists, on their own device, customised for their application, without sharing intellectual property or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will improve ecological image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources, particularly for camera trap images. Ease of training and use of transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofSensorsen
dc.relation.urihttps://github.com/u-infuse/u-infuseen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleU-Infuse: Democratization of Customizable Deep Learning for Object Detectionen
dc.typeJournal Articleen
dc.identifier.doi10.3390/s21082611en
dc.identifier.pmid33917792en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAndrewen
local.contributor.firstnameGregen
local.contributor.firstnameChristopheren
local.contributor.firstnamePaulen
local.contributor.firstnamePaulen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailasheple2@une.edu.auen
local.profile.emailgfalzon2@une.edu.auen
local.profile.emailclawso21@une.edu.auen
local.profile.emailpmeek5@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber2611en
local.format.startpage1en
local.format.endpage17en
local.identifier.scopusid85103812011en
local.peerreviewedYesen
local.identifier.volume21en
local.identifier.issue8en
local.title.subtitleDemocratization of Customizable Deep Learning for Object Detectionen
local.access.fulltextYesen
local.contributor.lastnameShepleyen
local.contributor.lastnameFalzonen
local.contributor.lastnameLawsonen
local.contributor.lastnameMeeken
local.contributor.lastnameKwanen
dc.identifier.staffune-id:asheple2en
dc.identifier.staffune-id:gfalzon2en
dc.identifier.staffune-id:clawso21en
dc.identifier.staffune-id:pmeek5en
local.profile.orcid0000-0001-7511-4967en
local.profile.orcid0000-0002-1989-9357en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/45542en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleU-Infuseen
local.relation.fundingsourcenoteThis research was funded by the NSW Environmental Trust "Developing Strategies for Effective Feral Cat Management" project. Andrew Shepley acknowledges the support provided through the Australian Government Research Training Program (RTP) Scholarship. The APC was funded by the University of New England.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorShepley, Andrewen
local.search.authorFalzon, Gregen
local.search.authorLawson, Christopheren
local.search.authorMeek, Paulen
local.search.authorKwan, Paulen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/0429c03d-bafe-4fb5-9e6f-24822cd7aa07en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000644820300001en
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/0429c03d-bafe-4fb5-9e6f-24822cd7aa07en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/0429c03d-bafe-4fb5-9e6f-24822cd7aa07en
local.subject.for2020460304 Computer visionen
local.subject.for2020460202 Autonomous agents and multiagent systemsen
local.subject.for2020460103 Applications in life sciencesen
local.subject.seo2020220402 Applied computingen
local.subject.seo2020220403 Artificial intelligenceen
local.subject.seo2020220404 Computer systemsen
Appears in Collections:Journal Article
School of Environmental and Rural Science
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/UInfuseShepleyFalzonLawsonMeek2021JournalArticle.pdfPublished Version63.92 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 14, 2024

Page view(s)

974
checked on Mar 7, 2023

Download(s)

2
checked on Mar 7, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons