Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/45542
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shepley, Andrew | en |
dc.contributor.author | Falzon, Greg | en |
dc.contributor.author | Lawson, Christopher | en |
dc.contributor.author | Meek, Paul | en |
dc.contributor.author | Kwan, Paul | en |
dc.date.accessioned | 2022-02-28T22:32:35Z | - |
dc.date.available | 2022-02-28T22:32:35Z | - |
dc.date.issued | 2021-04 | - |
dc.identifier.citation | Sensors, 21(8), p. 1-17 | en |
dc.identifier.issn | 1424-8220 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/45542 | - |
dc.description.abstract | <p>Image data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize access to deep learning technologies by providing an easy-to-use software application allowing non-technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists with the ability to train customised models using publicly available images and/or their own images without specific technical expertise. Auto-annotation and annotation editing functionalities minimize the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and object detection, allowing ecologists to access deep learning technologies usually only available to computer scientists, on their own device, customised for their application, without sharing intellectual property or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will improve ecological image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources, particularly for camera trap images. Ease of training and use of transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Sensors | en |
dc.relation.uri | https://github.com/u-infuse/u-infuse | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | U-Infuse: Democratization of Customizable Deep Learning for Object Detection | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/s21082611 | en |
dc.identifier.pmid | 33917792 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Andrew | en |
local.contributor.firstname | Greg | en |
local.contributor.firstname | Christopher | en |
local.contributor.firstname | Paul | en |
local.contributor.firstname | Paul | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | asheple2@une.edu.au | en |
local.profile.email | gfalzon2@une.edu.au | en |
local.profile.email | clawso21@une.edu.au | en |
local.profile.email | pmeek5@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 2611 | en |
local.format.startpage | 1 | en |
local.format.endpage | 17 | en |
local.identifier.scopusid | 85103812011 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 21 | en |
local.identifier.issue | 8 | en |
local.title.subtitle | Democratization of Customizable Deep Learning for Object Detection | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Shepley | en |
local.contributor.lastname | Falzon | en |
local.contributor.lastname | Lawson | en |
local.contributor.lastname | Meek | en |
local.contributor.lastname | Kwan | en |
dc.identifier.staff | une-id:asheple2 | en |
dc.identifier.staff | une-id:gfalzon2 | en |
dc.identifier.staff | une-id:clawso21 | en |
dc.identifier.staff | une-id:pmeek5 | en |
local.profile.orcid | 0000-0001-7511-4967 | en |
local.profile.orcid | 0000-0002-1989-9357 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/45542 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | U-Infuse | en |
local.relation.fundingsourcenote | This research was funded by the NSW Environmental Trust "Developing Strategies for Effective Feral Cat Management" project. Andrew Shepley acknowledges the support provided through the Australian Government Research Training Program (RTP) Scholarship. The APC was funded by the University of New England. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Shepley, Andrew | en |
local.search.author | Falzon, Greg | en |
local.search.author | Lawson, Christopher | en |
local.search.author | Meek, Paul | en |
local.search.author | Kwan, Paul | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/0429c03d-bafe-4fb5-9e6f-24822cd7aa07 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000644820300001 | en |
local.year.published | 2021 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/0429c03d-bafe-4fb5-9e6f-24822cd7aa07 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/0429c03d-bafe-4fb5-9e6f-24822cd7aa07 | en |
local.subject.for2020 | 460304 Computer vision | en |
local.subject.for2020 | 460202 Autonomous agents and multiagent systems | en |
local.subject.for2020 | 460103 Applications in life sciences | en |
local.subject.seo2020 | 220402 Applied computing | en |
local.subject.seo2020 | 220403 Artificial intelligence | en |
local.subject.seo2020 | 220404 Computer systems | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/UInfuseShepleyFalzonLawsonMeek2021JournalArticle.pdf | Published Version | 63.92 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
5
checked on Dec 14, 2024
Page view(s)
974
checked on Mar 7, 2023
Download(s)
2
checked on Mar 7, 2023
This item is licensed under a Creative Commons License