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Abstract: Image data is one of the primary sources of ecological data used in biodiversity conservation
and management worldwide. However, classifying and interpreting large numbers of images is time
and resource expensive, particularly in the context of camera trapping. Deep learning models have
been used to achieve this task but are often not suited to specific applications due to their inability
to generalise to new environments and inconsistent performance. Models need to be developed for
specific species cohorts and environments, but the technical skills required to achieve this are a key
barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize
access to deep learning technologies by providing an easy-to-use software application allowing non-
technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists
with the ability to train customised models using publicly available images and/or their own images
without specific technical expertise. Auto-annotation and annotation editing functionalities minimize
the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free
and open-source software solution that supports both multiclass and single class training and object
detection, allowing ecologists to access deep learning technologies usually only available to computer
scientists, on their own device, customised for their application, without sharing intellectual property
or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object
detection within a user-friendly GUI, generating a species distribution report, and other useful
statistics, (ii) custom train deep learning models using publicly available and custom training data,
(iii) achieve supervised auto-annotation of images for further training, with the benefit of editing
annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will
improve ecological image analysis and processing by allowing significantly more image data to be
processed with minimal expenditure of time and resources, particularly for camera trap images. Ease
of training and use of transfer learning means domain-specific models can be trained rapidly, and
frequently updated without the need for computer science expertise, or data sharing, protecting
intellectual property and privacy.

Keywords: animal identification; artificial intelligence; camera-trap images; camera trapping; deep
convolutional neural networks; deep learning; environmental software; wildlife ecology; wildlife
monitoring; ecological object detection

1. Introduction

The use of camera trap image analysis in biodiversity management is one of the
primary means by which ecological practitioners monitor wildlife [1–5], obtain species
distribution [6], perform population estimates [7–10] and observe animal behavioural
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patterns [11]. However, this results in millions of images being captured, which must
be processed. This is a time and resource expensive task, often manually undertaken by
ecologists, which has given rise to a strong need for automation [12]. This has triggered
significant interest in deep learning-based image processing solutions [13–20].

Related Works

Wildlife Insights [21] provides an online cloud-based service allowing practitioners to
upload camera trap images to a Google Cloud-based platform which filters empty images
and performs classification on 614 species. Similarly, Microsoft AI for Earth Camera Trap
API [22] uses a cloud-based system to perform object detection on large quantities of camera
trap images using MegaDetector. It can be used in conjunction with TimeLapse2 [23] and
Camelot [24], however inference is only available for separation of empty/non-empty
images, and detection of limited classes. Other cloud-based inference systems include
Project Zamba [25], which is a Python toolkit specific to African species. Although these
services facilitate the task of camera trap image processing, users do not have the option
to train models on their own images, nor can they use the services on their own device,
without sharing their image data. Furthermore, models are often not sufficiently location
invariant to be used with high confidence, limiting their widespread usage [26].

Alternatives to cloud-based services include ClassifyMe [20], which upon registration
provides offline, on-device access to more than five YOLOv2 [27] models trained on publicly
available camera trap datasets. However, these models are highly optimised for specific
environments, meaning they do not generalise well to unseen environments, and users are
unable to train their own models. Another alternative is Machine Learning for Wildlife
Image Classification (MLWIC) [19], which allows the development of custom models using
the R Programming Language [28]. However, this requires technical knowledge and a
large investment of time and resources into model development. Similarly, Camera-Trap-
Classifier [17], which is an experimental camera trap object detector, requires knowledge of
Unix, limiting its adoption by non-technical ecological practitioners.

One significant issue faced by all object detection solutions is the lack of location
invariance of deep learning models, and their inability to generalise to unseen environ-
ments [18,26,29,30]. Due to the inherent difficulty represented by high occlusion, illumina-
tion, high object density, camouflage, movement and poor data quality usually featured
in camera trap images, the development of high precision camera trap object detectors
capable of generalisation to any environment is a challenge that is yet to be achieved [14].
This means they lack sufficient accuracy to be deployed in domains not included in the
training data [18,26]. Transfer learning has been used to improve ability to generalise [17]
however optimal performance can only be attained if the ecological practitioner has access
to a model trained on their own data. Furthermore, development and deployment of such
models requires specialised computer science skills [20].

These needs are addressed by U-Infuse, which is a novel software application that
provides a means by which ecological practitioners can easily train their own deep learn-
ing object detectors. Significant investment of time in the technical programming and
specialised artificial intelligence domain knowledge are not required to develop custom
models. U-Infuse is designed to enable ecologists to train models according to the require-
ments of any given project. They may wish to train location invariant object detection
models on publicly available data and camera trap images according to the ‘infusion’
methodology proposed by [31], or highly domain-specific, location variant training of
models optimised for specific locations. This flexibility in the way U-Infuse can be used
allows practitioners to process image data in-house, at their own pace according to their
needs, removing the need to allocate significant time and resources to upload, save and
share data with service providers, which is a drawback of existing solutions.
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2. The U-Infuse Application

U-Infuse is a free, open-source software application supported by Windows 10, and
Linux operating systems, with source code provided to extend it to other operating systems.
The U-Infuse app is developed in the Python 3 programming language with bindings to
core Python-based machine learning frameworks and image processing facilities along
with a Qt5 Graphical User Interface (GUI). It has been verified on Windows 10 Home and
Professional, Ubuntu 18.04–20.04, and CentOS. It may be used on other systems within
a virtual machine. Copying, distribution and modification of U-Infuse source code is
encouraged. Accordingly, U-Infuse is distributed under the terms of a GNU General Public
License (https://www.gnu.org/licenses/gpl-3.0.en.html, accessed on 1 April 2021).

For best user experience, practitioners are encouraged to use the downloadable ex-
ecutable file for installation, on a Windows 10 system. The simple-to-use GUI allows
users to auto-annotate training images, custom train their own object detectors using Reti-
naNet [32], and perform inference using pretrained or custom models on custom datasets.
GUI Performance has been verified for large datasets, containing approximately 10,000 s of
images. U-Infuse is available online at GitHub (https://github.com/u-infuse/u-infuse,
accessed on 1 April 2021). All U-Infuse functionalities are also provided via Python scripts
and Jupyter Notebooks, which contain the U-Infuse pipeline that can be used as is, incor-
porated into, or adapted to any project on any platform. Whilst the GUI is appropriate for
workstations processing thousands of images, the Jupyter Notebooks allow the U-Infuse
functionalities to be extended to datasets of any size, on high performance computing
systems. All upgrades, demonstrations and tutorials are available on the corresponding
GitHub Wiki.

Installation of U-Infuse is straightforward and is achieved either from source code or
via a downloadable binary executable file complete with an installation wizard (Windows
only). Software dependencies include RetinaNet [32], TensorFlow [33], OpenCV and
Python 3. The installation script automatically incorporates these dependencies within
the installation. Model training via the Graphical Processor Unit is facilitated for CUDA
supported hardware and requires cuDNN and the CUDA development toolkit (which
must be installed by the user).

Functionalities

U-Infuse provides users with a complete object detection pipeline, supporting image
annotation, object detector training and inference capabilities. It uses as input image
datasets supporting all of the most commonly used image formats including PNG, JPEG
and TIFF, and optional corresponding annotation files (.xml format). All training scripts
and files are contained within the U-Infuse installation, or generated by user-initiated
training, inference or annotation processes. See Figure 1 for the workflow diagram.

https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/u-infuse/u-infuse
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Figure 1. Sample workflow diagram demonstrating pipeline useability. Please refer to [30] for best practices when using
FlickR and iNaturalist (FiN) images.

3. Animal Detection and Classification Using Default Models

The U-Infuse installation comes with six pretrained RetinaNet object detector models.
Detailed information about these models is provided in Table 1. These models are provided
to be used as pretrained models for user-controlled transfer learning, for inference and
demonstration purposes.

Table 1. Summary of pretrained models included with U-Infuse installation.

Model Name Classes Source

pretrained_COCO 80 classes MS COCO
Australian_Multi-class 30 classes FlickR

pig_single_class Pig FlickR
striped_hyena_single_class Dog FlickR

rhino_single_class Cat FlickR

These models can be used for camera trap image classification via the Object Detection
dialogue, shown in Figure 2. Users can select the model of their choice via the dropdown
list (1). The chosen model will perform object detection on all the images contained in
the chosen image folder (2). Users may optionally limit the number of images on which
inference is conducted via the option at (3), with the default being the number of images in
the chosen folder. After choosing the level of desired accuracy via the confidence threshold
(4), they may elect to show images while inference is running and generate an object
detection report (5).
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Figure 2. The Object Detection dialogue allows users to perform object detection on a dataset of
images, optionally generating an object detection report.

If they choose to generate an inference report, they must provide a name for their
report (6). A summary and detailed report will be generated in JSON format and saved in
the ./reports directory. The summary report contains information about the model used, the
dataset, and the object detection output, such as species distribution and number of empty
images. The detailed report contains object detection data for each image, for example,
number of objects, class, confidence of detections and bounding box coordinates. Users
can optionally generate a JSON file containing references to each empty image. A sample
of the Summary Report is shown in Figure 3, and a sample of the Detailed Report is shown
in Figure 4. The Summary Report can be opened via the open at (8).

Figure 3. A sample summary report generated by running inference on a dataset of images. The
report provides a summary of object detection information, including class distribution, number and
percentage of positive images compared to empty images.
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Figure 4. A sample of the detailed report, which shows per image data, including class label,
classification confidence and bounding box data for each object. This preview is generated using
json2table.com.

4. Custom Model Training Using FlickR and Camera Trap Image Infusion

If the results attained by the default models are not sufficiently accurate for the user’s
purposes, or the models are not sufficiently specific to the user’s domain, they may elect to
custom train their own model or models. They may choose to use publicly available images
such as FlickR and iNaturalist (FiN) images, infused with camera trap images as proposed
by [31] or they may alternatively train using images from any source, including publicly
available images, and/or their own trap images. It is strongly recommended that users
use negative sampling when training custom models because negative sampling has been
shown to significantly improve the ability of a model to discriminate between positive and
negative objects [34]. Negative sampling refers to the inclusion of unannotated non-target
objects, which share similarities with the target class, in the training set. For example, if an
object detector Is being trained to detect feral dogs, negative samples of similar animals
such as foxes and feral cats should be included in training.

4.1. Dataset and Classes

All datasets to be used for training should be placed in the ‘datasets’ directory within
the U-Infuse base directory. Users may add datasets of their choice to this directory or
download U-Infuse FlickR annotated datasets from the U-Infuse GitHub page. The U-
Infuse dataset repository contains 35 freely available single class datasets. Users may
choose to use these datasets, or other publicly available datasets, or private datasets such
as project specific camera trap images. User images are not shared, or accessible outside
the user’s network or device, ensuring protection of intellectual property and privacy. All
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bounding box annotations must be placed in the ‘annotations’ directory, also within the
U-Infuse base directory. Users must ensure that any custom datasets are accompanied by
corresponding annotation files, which must be placed in the ‘annotations’ directory in a
folder with the same name as the corresponding image dataset. For example, if the user
adds the image dataset ‘New England Jan’ to ‘datasets’ they must provide annotations
in a folder named ‘New England Jan’ in the ‘annotations’ directory. These annotations
must be in PASCAL VOC format. Alternative annotation formats including YOLO may be
supported in future releases. If a user does not have annotations, they may auto-annotate
their images within U-Infuse, as discussed in Section 6.

Once the user has ensured that their image and annotation folders are located correctly
in datasets and annotations, they may proceed to the training process, which can be initiated
via the Training Datasets and Classes dialogue shown in Figure 5. Users must select one
or more datasets for inclusion in training from the list of available datasets shown in the
combo-box denoted by (1).

Figure 5. The Model Training dialogue allows users to custom train models on datasets and classes of their choice.

Once the user has selects one or more datasets, the list of classes available for training
within those datasets is shown in the combo-box denoted by (2). If a dataset is deselected,
classes specific to that dataset can no longer be chosen. U-Infuse supports both single class
and multi-class training, meaning the user can select one or more classes for inclusion
in training from (2). For example, the user may select five datasets, containing a total of
twelve classes, but they may choose to only train on three of the available classes. They can
then select one or more datasets from the combobox denoted by (3) for negative sampling.
Alternatively, they can select the option to use all other classes for negative sampling. They
may elect not to use negative sampling (4) however this is not recommended.

4.2. Training

After dataset and class selection, the user may proceed to the training phase. Training
requires the use of a Graphical Processing Unit (GPU) supporting CUDA [35] due to the
computationally expensive nature of training deep neural networks. Deep learning is a
resource-intensive process that cannot be effectively achieved using a standard CPU. GPUs
are specialised hardware used to process images, as they can handle large amounts of
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data, and support parallel processing. It is worth noting that U-Infuse does not currently
support training without pre-initialised network weights, which requires thousands to
millions of images to achieve acceptable results, due to random initialisation of weights.
Instead, U-Infuse provides capability for modifying pre-trained network weights using
transfer learning, which requires comparatively minimal data and computational cost to
develop effective deep learning models [16,17].

U-Infuse features default training parameters established within our research program.
They can be modified via the Model Training Settings Dialogue shown in Figure 6. Firstly,
the user must select a pretrained model (1). U-Infuse provides 6 pretrained models, one
of which can be selected as the backbone for further model training. User provided or
trained models can also be used as the basis for further model training, if placed in the
./pretrained_models directory. Training time will not be significantly affected by the user’s
selection of pretrained models. Pretrained models should be chosen based on the user’s
target species. For example, if they wish to create a vehicle detector, they should choose
the pretrained_COCO model as their backbone, as it has been trained on cars and trucks
already, so it will have learned some of the relevant features. Similarly, if the user wishes
to create a macropod detector, they should choose the Australian_Multi-class pretrained
model as their backbone, as it was trained on 30 Australian species, including wallabies
and kangaroos.

Figure 6. Default training parameters are provided however users may elect to modify these depending on their GPU
capabilities and dataset size.

Users may elect to modify the ‘Epochs’ (2) option. By default, training will proceed
for 30 epochs, however users can increase or decrease the number of epochs, depending on
the accuracy they seek. Reducing the number of epochs will reduce training time, however
it may also reduce accuracy. Increasing the number of epochs means that the model is
trained for longer, resulting in higher model training accuracy, but can lead to overfitting.
Overfitting occurs when the network memorises the features of the training data, limiting
its ability to generalise to other datasets. To avoid overfitting and allow monitoring of
training, U-Infuse outputs data such as the training and validation loss, as well as Mean
Average Precision (mAP) results calculated on a validation dataset after each training
epoch. Note, mAP refers to the mean of the average precision (AP) scores calculated for
each class. For an explanation of AP, see [36].

To use U-Infuse for training, users must have access to a GPU. As GPU capability
may vary between users, the batch size used for training can be varied (4). A default batch
size of 2 is provided, however users with high capability GPUs may elect to increase this
value, while those with limited GPU resources may reduce the batch size to 1. The greater
the batch size the more GPU memory required for training. Once the datasets, classes
and training parameters have been selected, the user can proceed to generate the training
scripts. Alternatively, the dialogue may be closed, with no changes saved by selecting
the Cancel option. Any error or success messages are shown in the main frame output
window.

If the training configuration process is successfully completed, the Start Training
option on the main frame may be selected to train a new RetinaNet model. Training will
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usually take several hours, depending on the dataset size, number of epochs and batch size
used. During training the user will be updated by messages in the main frame, as shown
in Figure 7. After each epoch, a snapshot of the model is saved in the ./snapshots directory.
A snapshot is a file containing the weights of the model after a given epoch and should not
be confused with terms such as Snapshot Serengeti project.

Figure 7. The main frame which allows users to start, stop and monitor training of custom models. Training progress can
be monitored via the overall training loss, regression loss and classification loss. Generally, the lower the loss, the better
the training. Model performance can also be monitored via the validation mAP, which is calculated on a subsample of the
training data.

Once training is complete, the user can choose which snapshot they wish to retain as
their final custom model. They can preview the performance of snapshots via the Preview
Custom Model dialogue shown in Figure 8. They can choose snapshots via the dropdown
list at (1), select their test images (2) and the number of images they wish to preview (3) as
well as a level of accuracy (4). Once they run the model (5), they may name their model (6)
and it (8). It is recommended that users delete all other models (7) as snapshots are large
files. The exported model will be saved, to be reused via the Object Detection dialogue for
object detection on any dataset, as described in Section 4.
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Figure 8. The Preview Custom Model dialogue allows the user to preview the performance of custom trained models on a
small subset of randomly sampled test images. It also allows users to export chosen models for future use.

5. Auto-Annotation and Manual Annotation Editing

One of the most time-consuming aspects of developing deep learning-based object
detectors is the annotation of training images. U-Infuse automates this process, by allowing
users to employ pretrained models (object detectors), or a provided Single Class Annotator
to annotate any number of images. This can be achieved via the Auto-Annotation dialogue
shown in Figure 9. Users must add the folder/s containing the images they wish to
annotate to the ‘datasets’ directory. They can then access their chosen dataset via the
dropdown list (1). If the user chooses to conduct multi-class annotation (2), they must
select a pretrained model from the list of available options (4). The labels used to annotate
objects will be chosen by the pretrained model. Alternatively, the user can provide a single
class label (3) which will be used to annotate all bounding boxes generated by the provided
auto-annotator. This is very useful in cases where the user wants to annotate a dataset
containing objects for which they do not have an object detector. Users can also vary
the confidence threshold (5). A higher confidence threshold means less bounding boxes
(potential objects) are retained, while a lower confidence threshold allows more bounding
boxes to be shown, hence a greater number of potential detections are retained. Users may
elect to show images (6) or not. Note, electing to show images is more computationally
expensive, meaning the annotation process will usually take longer.

Once the user has run the annotation model (7), they may edit these annotations (8)
via labelImg [37]. LabelImg is a separate, open source and freely available app which
is opened ‘Edit Annotations’ is clicked. It can be used to remove unwanted boxes, edit
the position or size of boxes or add boxes around objects that were missed. Sometimes,
the auto-annotator will miss objects, add extra boxes, or the boxes may not be optimal,
for example, the trap image shown in Figure 10 contains an extra box which should be
removed.
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Figure 9. The Auto-Annotation dialogue allows users to achieve both single class and multi-class auto-annotation of images.
Annotations can be edited via labelImg.

Bounding boxes can be added, removed or resized, and labels can be changed within
the labelImg GUI as shown in Figure 10 Users must ensure they save any altered annota-
tions in Pascal VOC format by selecting the option denoted by (1) in Figure 10. Once this
process is completed, the images and corresponding annotation files can be used to train
models, as described in Section 5.

Figure 10. Annotations can be edited in labelImg. Bounding boxes can be added, removed or altered. Labels can also be
altered.
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6. Case Study: Monitoring and Managing Feral Cats

In this section, we present a brief real-world case study exemplifying the usage of
U-Infuse to process camera trap images of feral cats collected as part of an extensive feral
cat management program in the New England Gorges region in Northern NSW, Australia.
We evaluate U-Infuse in the task of training a feral cat detector, as well as the application of
its object detection functionalities for image data analysis.

6.1. Background

Democratizing access to deep learning model development and usage is of primary
importance in the management of ecological resources, including the monitoring and
management of invasive species [38]. Invasive species such as feral cats have a significant
detrimental impact on natural ecosystems and native species in Australia. Every year,
feral cats are thought to kill over 1 billion animals across Australia [39]. They are also
responsible for transmitting diseases such as Toxoplasma gondii, which can cause illness and
death in both native fauna and livestock [40].

Despite aspirations to control feral cat populations throughout Australia, there are
currently no cost-effective methods available to managers to effectively mitigate impacts.
As such, numerous Australian academic institutions, conservation groups and government
agencies have prioritised the development of deep learning models capable of confidently
detecting and localising feral cats in camera trap imagery. This approach provides a
foundation for automated or more efficient image processing, enabling effective monitoring
of feral cat populations, and under-pinning the basis of automated management tools. This
technology also presents a range of tools that can be extended beyond feral cats, to a broad
range of invasive species, as well as native species in Australia and internationally.

6.2. FiN-Infusion Training with U-Infuse

We applied U-Infuse to develop and use a feral cat detector for camera trap image
processing. U-Infuse was downloaded from GitHub and installed on a CentOS Linux
system with NVIDIA GV100GL [Tesla V100 PCIe 32 GB] Graphical Processing Unit (GPU).
The feral cat detector was developed using the Model Training functionality within U-
Infuse, as well as Auto-Annotation and model exporting features.

We used the FiN-infusion training methodology proposed by [31] to train a feral cat
detector. The training and test sets are described in Table 2. Our training dataset comprised
of a total of 5043 images, including 1216 positive samples (images containing cats) and
3827 negative samples (blank images, or images of other animals). We performed 22% out
of sample camera trap infusion. Infusion refers to training a model on a small subset of
camera trap images as well as a larger set of FiN images to improve robustness of our model
to the particularities of camera trap images. Out of sample means that the infusion training
images are from different sites to the test images. We chose to include a large proportion of
negative samples, with focus on visually similar animals such as foxes and dogs, as well as
animals commonly found around our trap sites. Negative sampling significantly reduces
the number of false positives, improving the reliability and accuracy of the model.

Positive samples were auto-annotated using the U-Infuse single class auto-annotator.
Approximately 15% (238 images) of annotations required correction for reasons including
false negatives, or bounding boxes that were either too large or small. Annotating 1216
images of a low-density species such as feral cat usually takes a single human annotator
up to 3 h. Auto-annotation using U-Infuse took only 3 min and 15 s. Correcting poorly
annotated images took approximately 15 min. This represents an approx. 90% decrease
in time expenditure on the annotation task. It is noteworthy that the datasets used for
training were pre-sorted (as containing a feral cat, a non-target class, or no object). There
was no need to annotate negative images (blanks or non-target classes) because U-Infuse
automatically validates all negative samples selected prior to generating training files.
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Table 2. FiN stands for FlickR and iNaturalist images. Images were downloaded and pre-processed using the procedure
described by [31].

Dataset Description No Images No Capture Events

Training

Positive Samples
FiN_feral_cats 1000 NA

AU_Feral_Cat_A_Grade_1 166 NA
AU_Feral_Cat_A_Grade_2 50 NA

Negative Samples

FiN_australian_animals 818 NA
FiN_brushturkey 335 NA

FiN_deer 340 NA
FiN_dog 355 NA
FiN_fox 292 NA

FiN_koala 309 NA
FiN_quoll 287 NA

FiN_random_negatives_feral_cat_version 782 NA
infusion_AU_Unbalanced_A_Grade_Trap_Fox 56 NA

infusion_AU_Unbalanced_A_Grade_Trap_Other
(koalas, goannas, possums, etc.) 63 NA

infusion_AU_Unbalanced_A_Grade_Trap_Kangaroo 53 NA
infusion_AU_Unbalanced_A_Grade_Trap_Feral_dog 53 NA

infusion_AU_Unbalanced_A_Grade_Trap_Pig 53 NA
blank_trap 31 NA

Testing

Positive Samples
NE_Gorge_trap_2_day 130 128

NE_Gorge_trap_2_infrared 403 135
Wellington Camera Traps (cat) 1347 449

Negative Samples

NE_Gorge_trap_Dog 64 NA
NE_Gorge_trap_Kangaroo 20 NA

NE_Gorge_trap_Blank 64 NA
NE_Gorge_trap_Fox 64 NA
NE_Gorge_trap_Pig 87 NA

NE_Gorge_trap_Other 162 NA

The testing datasets comprised of positive and negative images. The NE_Gorge
datasets are comprised of images from the New England Gorges in Northern NSW. One
dataset contains images captured in daylight, whilst the other contains infrared images
captured at night. The second testing data source was the Wellington (cat) dataset available
on the LILA repository [41]. It contains images of feral cats collected using 187 camera traps
in various locations in Wellington, New Zealand. We tested our model on two completely
different projects to ensure robustness to variations in camera trap configuration and
environmental features such as vegetation and landforms.

We evaluated our model on a per image and per capture event basis. Per image
evaluation is when the model correctly classifies an image as containing a cat, or not. Per
capture event evaluation is when the model correctly classifies a group of images captured
in a sequence as containing at least one instance of a cat. A capture event happens when a
camera captures a sequence of images in a burst based on predefined user settings, when
the camera motion detector is triggered. The NE_Gorge data contains capture events made
up of 1 to 10 images, while the Wellington data contains 3 images per capture event.

Due to having access to a capable GPU, we modified the training settings to batch
size of 8 and trained for a total of 30 epochs. The loss converged on 0.63 with a validation
mAP of 93%. Total training time was 6 h and 38 min. Notably, the time taken to perform
tasks outlined in this method is representative only of this application, and times taken for
annotation and training will vary considerably, depending on factors such as dataset size,
image quality and GPU capabilities.

6.3. Per Image and Per Capture Event Performance

Once training terminated, we used the Preview Custom Model dialogue to preview
the performance of some of our models (one model is saved per epoch). We chose to retain
the final epoch snapshot. We named this model ‘felis_catus_detector’ and exported it. This
model was now in our ./pretrained models directory for use in camera trap object detection.
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We then evaluated the performance of our model on the test sets described in Table 2.
Results are presented in Table 3.

Table 3. Performance of felis_catus_detector on images containing cats ranged from 55–75% accuracy
when calculated on a per image basis. Performance was significantly better when evaluated on a
per capture event basis (73.94–84.44%), which is more useful in for practical purposes. The model
performed well on negative samples, with 80–100% of images being correctly classified.

Test Set Per Capture Event Per Image

Positive
NE_Gorge_trap_2_day 76.56% (98/128) 75% (98/130)

NE_Gorge_trap_2_infrared 84.44% (114/135) 66% (266/403)
Wellington Camera Traps (cat) 73.94% (332/449) 55% (743/1347))

Negative

NE_Gorge_trap_Dog NA 94% (60/64)
NE_Gorge_trap_Kangaroo NA 85% (3/20)

NE_Gorge_trap_Blank NA 100% (29/29)
NE_Gorge_trap_Fox NA 80% (51/64)
NE_Gorge_trap_Pig NA 80% (70/87)

NE_Gorge_trap_Other NA 86% (140/162)

6.4. Discussion

Real world camera trap image quality is often very poor, or characterized by specific
features not present in other camera trap datasets, or publicly available images. To achieve
highly accurate object detection, it is therefore often necessary to train on images from the
study location. This is facilitated by the use of the FiN-infusion method proposed by [30],
which involves training on a combination of highly variable publicly available images, and
a small subset of in-sample camera trap images collected as part of the field study to boost
confidence in difficult images. U-Infuse allows ecologists to use the FiN-infusion training
themselves, to train their own high accuracy object detections models without having to
resort to up-skilling in computer science. It therefore represents a significant contribution
in helping to overcome the problem of poor performance of generic models on difficult
real-world camera trap images.

The U-Infuse Object Detection dialogue can be used to perform object detection on
any number of images, with the option to generate a summary report and a detailed
report (per image data). The summary report is useful in reporting the number of blank
images (images not containing any animals of interest, or animals able to be detected by the
model), as well as the number of images containing a cat. If U-Infuse is used for multi-class
detection, the summary report would show the class distribution (calculated on a per
image basis), which is a list of the different animal types detected by the model in the set of
images, as well as how many instances of each animal.

We used the detailed report (per image data) to group images into capture events and
report performance on a per capture event basis. To achieve this, we were required to write
an algorithm to group images based on image name, which is highly dependent on the
data collection method. One possible improvement to U-Infuse would be to allow for per
capture event performance reporting without requiring users to post-process the detailed
report. This would improve usability of the software.

A very useful feature of U-Infuse is the ease at which the object detection model can
be used in conjunction with other image processing software. Thus, it may be used for one
or more purposes, e.g., auto-annotation of images (no GPU required), model training (GPU
required), and/or object detection (no GPU required). This flexibility means it can easily
be incorporated in existing image processing pipelines, offering the benefits of automation
of tasks that usually require significant human time expenditure.

7. Future Work and Conclusions

U-Infuse is a free and open source application which implements the location invari-
ance methodology proposed by [31]. It democratises deep learning and AI technologies
by making deep learning more accessible for ecological practitioners. Furthermore, it can
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be used for location invariant object detection in fields outside of ecology. Its open source
nature means members of the community can contribute to its development, incorporat-
ing it and using it to complement existing software and deploying models developed to
cloud-based platforms. Ecologists are encouraged to contribute their annotated camera
trap images to the U-Infuse repository to contribute to the development of more powerful,
location invariant object detectors.

A major constraint on the widespread deployment of AI in ecology and automated
processing of camera trap images is the use of complex deep learning algorithms and
processes, usually accessible only to computer scientists. U-Infuse bridges this gap by
allowing ecologists to train their own models via a user-friendly GUI. U-Infuse is therefore
an important connecting inter-phase between computer science and ecology as it allows
field practitioners to undertake tasks usually only understood by and reserved to computer
scientists. It represents a significant progression from early studies, which involved eco-
logical practitioners collecting images, manually cataloguing and placing bounding boxes
around animals, providing these images to computer scientists to develop domain specific
object detectors, which is a major limitation of solutions such as ClassifyMe [20].

Furthermore, U-Infuse may be extended to support other frameworks including YOLOv3
(Redmon and Farhadi 2016), Faster RCNN [42] and Single Shot Detectors (SSDs) [43]. This
would offer more options to users, for example YOLOv3 and SSDs are capable of real-time
performance, while Faster RCNN provides greater accuracy, but is slower. Incorporating
FlickR API support to allow image downloading and sorting within U-Infuse, and integra-
tion of the Structural Similarity Index Measure (SSIM) image similarity tool and duplicate
remover [31] would also extend its usability in the development of high performance,
domain specific deep learning object detectors. Copying, distribution and modification
of U-Infuse source code is encouraged. Accordingly, U-Infuse is distributed under the
terms of a GNU General Public License (https://www.gnu.org/licenses/gpl-3.0.en.html
accessed on 1 April 2021).
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