Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/22513
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoghaddar, Nasiren
dc.contributor.authorSwan, Andrewen
dc.contributor.authorVan Der Werf, Julius Hen
dc.date.accessioned2018-02-13T16:08:00Z-
dc.date.issued2017-
dc.identifier.citationGenetics Selection Evolution, 49(1), p. 1-10en
dc.identifier.issn1297-9686en
dc.identifier.issn0999-193Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/22513-
dc.description.abstractBackground: Genomic prediction using high-density (HD) marker genotypes is expected to lead to higher prediction accuracy, particularly for more heterogeneous multi-breed and crossbred populations such as those in sheep and beef cattle, due to providing stronger linkage disequilibrium between single nucleotide polymorphisms and quantitative trait loci controlling a trait. The objective of this study was to evaluate a possible improvement in genomic prediction accuracy of production traits in Australian sheep breeds based on HD genotypes (600k, both observed and imputed) compared to prediction based on 50k marker genotypes. In particular, we compared improvement in prediction accuracy of animals that are more distantly related to the reference population and across sheep breeds. Methods: Genomic best linear unbiased prediction (GBLUP) and a Bayesian approach (BayesR) were used as prediction methods using whole or subsets of a large multi-breed/crossbred sheep reference set. Empirical prediction accuracy was evaluated for purebred Merino, Border Leicester, Poll Dorset and White Suffolk sire breeds according to the Pearson correlation coefficient between genomic estimated breeding values and breeding values estimated based on a progeny test in a separate dataset. Results: Results showed a small absolute improvement (0.0 to 8.0% and on average 2.2% across all traits) in prediction accuracy of purebred animals from HD genotypes when prediction was based on the whole dataset. Greater improvement in prediction accuracy (1.0 to 12.0% and on average 5.2%) was observed for animals that were genetically lowly related to the reference set while it ranged from 0.0 to 5.0% for across-breed prediction. On average, no significant advantage was observed with BayesR compared to GBLUP.en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofGenetics Selection Evolutionen
dc.titleGenomic prediction from observed and imputed high-density ovine genotypesen
dc.typeJournal Articleen
dc.identifier.doi10.1186/s12711-017-0315-4en
dcterms.accessRightsGolden
dc.subject.keywordsAnimal Breedingen
local.contributor.firstnameNasiren
local.contributor.firstnameAndrewen
local.contributor.firstnameJulius Hen
local.subject.for2008070201 Animal Breedingen
local.subject.seo2008830311 Sheep - Woolen
local.subject.seo2008830310 Sheep - Meaten
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailnmoghad4@une.edu.auen
local.profile.emailaswan@une.edu.auen
local.profile.emailjvanderw@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-chute-20170807-095355en
local.publisher.placeUnited Kingdomen
local.format.startpage1en
local.format.endpage10en
local.identifier.scopusid85018503209en
local.peerreviewedYesen
local.identifier.volume49en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnameMoghaddaren
local.contributor.lastnameSwanen
local.contributor.lastnameVan Der Werfen
dc.identifier.staffune-id:nmoghad4en
dc.identifier.staffune-id:aswanen
dc.identifier.staffune-id:jvanderwen
local.profile.orcid0000-0002-3600-7752en
local.profile.orcid0000-0001-8048-3169en
local.profile.orcid0000-0003-2512-1696en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:22701en
local.identifier.handlehttps://hdl.handle.net/1959.11/22513en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleGenomic prediction from observed and imputed high-density ovine genotypesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMoghaddar, Nasiren
local.search.authorSwan, Andrewen
local.search.authorVan Der Werf, Julius Hen
local.uneassociationUnknownen
local.identifier.wosid000399765000002en
local.year.published2017en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/a2b13174-3a0c-4066-ab05-5debdcc3e424en
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.seo2020100413 Sheep for woolen
local.subject.seo2020100412 Sheep for meaten
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
School of Environmental and Rural Science
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 9, 2024

Page view(s)

2,440
checked on Dec 10, 2023

Download(s)

2
checked on Dec 10, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.