Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/22513
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Moghaddar, Nasir | en |
dc.contributor.author | Swan, Andrew | en |
dc.contributor.author | Van Der Werf, Julius H | en |
dc.date.accessioned | 2018-02-13T16:08:00Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Genetics Selection Evolution, 49(1), p. 1-10 | en |
dc.identifier.issn | 1297-9686 | en |
dc.identifier.issn | 0999-193X | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/22513 | - |
dc.description.abstract | Background: Genomic prediction using high-density (HD) marker genotypes is expected to lead to higher prediction accuracy, particularly for more heterogeneous multi-breed and crossbred populations such as those in sheep and beef cattle, due to providing stronger linkage disequilibrium between single nucleotide polymorphisms and quantitative trait loci controlling a trait. The objective of this study was to evaluate a possible improvement in genomic prediction accuracy of production traits in Australian sheep breeds based on HD genotypes (600k, both observed and imputed) compared to prediction based on 50k marker genotypes. In particular, we compared improvement in prediction accuracy of animals that are more distantly related to the reference population and across sheep breeds. Methods: Genomic best linear unbiased prediction (GBLUP) and a Bayesian approach (BayesR) were used as prediction methods using whole or subsets of a large multi-breed/crossbred sheep reference set. Empirical prediction accuracy was evaluated for purebred Merino, Border Leicester, Poll Dorset and White Suffolk sire breeds according to the Pearson correlation coefficient between genomic estimated breeding values and breeding values estimated based on a progeny test in a separate dataset. Results: Results showed a small absolute improvement (0.0 to 8.0% and on average 2.2% across all traits) in prediction accuracy of purebred animals from HD genotypes when prediction was based on the whole dataset. Greater improvement in prediction accuracy (1.0 to 12.0% and on average 5.2%) was observed for animals that were genetically lowly related to the reference set while it ranged from 0.0 to 5.0% for across-breed prediction. On average, no significant advantage was observed with BayesR compared to GBLUP. | en |
dc.language | en | en |
dc.publisher | BioMed Central Ltd | en |
dc.relation.ispartof | Genetics Selection Evolution | en |
dc.title | Genomic prediction from observed and imputed high-density ovine genotypes | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1186/s12711-017-0315-4 | en |
dcterms.accessRights | Gold | en |
dc.subject.keywords | Animal Breeding | en |
local.contributor.firstname | Nasir | en |
local.contributor.firstname | Andrew | en |
local.contributor.firstname | Julius H | en |
local.subject.for2008 | 070201 Animal Breeding | en |
local.subject.seo2008 | 830311 Sheep - Wool | en |
local.subject.seo2008 | 830310 Sheep - Meat | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | Animal Genetics and Breeding Unit | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | nmoghad4@une.edu.au | en |
local.profile.email | aswan@une.edu.au | en |
local.profile.email | jvanderw@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-chute-20170807-095355 | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 1 | en |
local.format.endpage | 10 | en |
local.identifier.scopusid | 85018503209 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 49 | en |
local.identifier.issue | 1 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Moghaddar | en |
local.contributor.lastname | Swan | en |
local.contributor.lastname | Van Der Werf | en |
dc.identifier.staff | une-id:nmoghad4 | en |
dc.identifier.staff | une-id:aswan | en |
dc.identifier.staff | une-id:jvanderw | en |
local.profile.orcid | 0000-0002-3600-7752 | en |
local.profile.orcid | 0000-0001-8048-3169 | en |
local.profile.orcid | 0000-0003-2512-1696 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:22701 | en |
local.identifier.handle | https://hdl.handle.net/1959.11/22513 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Genomic prediction from observed and imputed high-density ovine genotypes | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Moghaddar, Nasir | en |
local.search.author | Swan, Andrew | en |
local.search.author | Van Der Werf, Julius H | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000399765000002 | en |
local.year.published | 2017 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/a2b13174-3a0c-4066-ab05-5debdcc3e424 | en |
local.subject.for2020 | 300305 Animal reproduction and breeding | en |
local.subject.seo2020 | 100413 Sheep for wool | en |
local.subject.seo2020 | 100412 Sheep for meat | en |
Appears in Collections: | Animal Genetics and Breeding Unit (AGBU) Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
10
checked on Nov 9, 2024
Page view(s)
2,440
checked on Dec 10, 2023
Download(s)
2
checked on Dec 10, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.