Genomic prediction from observed and imputed high-density ovine genotypes

Title
Genomic prediction from observed and imputed high-density ovine genotypes
Publication Date
2017
Author(s)
Moghaddar, Nasir
( author )
OrcID: https://orcid.org/0000-0002-3600-7752
Email: nmoghad4@une.edu.au
UNE Id une-id:nmoghad4
Swan, Andrew
( author )
OrcID: https://orcid.org/0000-0001-8048-3169
Email: aswan@une.edu.au
UNE Id une-id:aswan
Van Der Werf, Julius H
( author )
OrcID: https://orcid.org/0000-0003-2512-1696
Email: jvanderw@une.edu.au
UNE Id une-id:jvanderw
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
BioMed Central Ltd
Place of publication
United Kingdom
DOI
10.1186/s12711-017-0315-4
UNE publication id
une:22701
Abstract
Background: Genomic prediction using high-density (HD) marker genotypes is expected to lead to higher prediction accuracy, particularly for more heterogeneous multi-breed and crossbred populations such as those in sheep and beef cattle, due to providing stronger linkage disequilibrium between single nucleotide polymorphisms and quantitative trait loci controlling a trait. The objective of this study was to evaluate a possible improvement in genomic prediction accuracy of production traits in Australian sheep breeds based on HD genotypes (600k, both observed and imputed) compared to prediction based on 50k marker genotypes. In particular, we compared improvement in prediction accuracy of animals that are more distantly related to the reference population and across sheep breeds. Methods: Genomic best linear unbiased prediction (GBLUP) and a Bayesian approach (BayesR) were used as prediction methods using whole or subsets of a large multi-breed/crossbred sheep reference set. Empirical prediction accuracy was evaluated for purebred Merino, Border Leicester, Poll Dorset and White Suffolk sire breeds according to the Pearson correlation coefficient between genomic estimated breeding values and breeding values estimated based on a progeny test in a separate dataset. Results: Results showed a small absolute improvement (0.0 to 8.0% and on average 2.2% across all traits) in prediction accuracy of purebred animals from HD genotypes when prediction was based on the whole dataset. Greater improvement in prediction accuracy (1.0 to 12.0% and on average 5.2%) was observed for animals that were genetically lowly related to the reference set while it ranged from 0.0 to 5.0% for across-breed prediction. On average, no significant advantage was observed with BayesR compared to GBLUP.
Link
Citation
Genetics Selection Evolution, 49(1), p. 1-10
ISSN
1297-9686
0999-193X
Start page
1
End page
10

Files:

NameSizeformatDescriptionLink