Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/15169
Title: | A Comparative Study of Land Cover Classification Techniques for "Farmscapes" Using Very High Resolution Remotely Sensed Data | Contributor(s): | Verma, Niva (author); Lamb, David (author); Reid, Nick (author) ; Wilson, Brian (author) | Publication Date: | 2014 | DOI: | 10.14358/PERS.80.5.461 | Handle Link: | https://hdl.handle.net/1959.11/15169 | Abstract: | High spatial resolution images (~10 cm) are routinely available from airborne platforms. Few studies have examined the applicability of using such data to characterize land cover in "farmscapes" comprising open pasture and remnant vegetation communities of varying density. Very high spatial resolution remotely sensed imagery has been used to classify land cover classes on a ~5000 ha extensive grazing farm in Australia. This "farmscape" consisted of open pasture fields, scattered trees, and remnant vegetation (woodlands). The relative performances of object-based and pixel-based approaches to classification were tested for accuracy and applicability. Maximum likelihood classification (MLC) was used for pixel-based classification while the k-nearest neighbor (k-NN) technique was used for object-based classification. A range of image sampling scales was tested for image segmentation. At an optimal sampling scale, the pixel-based classification resulted in an overall accuracy of 77 percent, while the object-based classification achieved an overall accuracy of 86 percent. While both the object- and pixel-based classification techniques yielded higher quantitative accuracies, a "more realistic" land cover classification, with few errors due to intermixing of similar classes, was achieved using the object-based method. | Publication Type: | Journal Article | Source of Publication: | Photogrammetric Engineering and Remote Sensing, 80(5), p. 461-470 | Publisher: | American Society for Photogrammetry and Remote Sensing | Place of Publication: | United States of America | ISSN: | 0099-1112 | Fields of Research (FoR) 2008: | 070104 Agricultural Spatial Analysis and Modelling | Fields of Research (FoR) 2020: | 300206 Agricultural spatial analysis and modelling | Socio-Economic Objective (SEO) 2008: | 960604 Environmental Management Systems | Socio-Economic Objective (SEO) 2020: | 189999 Other environmental management not elsewhere classified | Peer Reviewed: | Yes | HERDC Category Description: | C1 Refereed Article in a Scholarly Journal |
---|---|
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
5
checked on Dec 7, 2024
Page view(s)
2,146
checked on Mar 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.