Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64957
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTran, Trien Phaten
dc.contributor.authorUd Din, Fareeden
dc.contributor.authorBrankovic, Ljiljanaen
dc.contributor.authorSanin, Cesaren
dc.contributor.authorHester, Susan Men
dc.date.accessioned2025-03-01T11:11:50Z-
dc.date.available2025-03-01T11:11:50Z-
dc.identifier.citationVietnam Journal of Computer Science, p. 1-35en
dc.identifier.issn2196-8896en
dc.identifier.issn2196-8888en
dc.identifier.urihttps://hdl.handle.net/1959.11/64957-
dc.description.abstract<p>Deep learning has emerged as a transformative approach in medicinal plant identification, addressing the critical need for accurate and scalable solutions to support biodiversity conservation, traditional medicine, and sustainable healthcare practices. This systematic literature review examines 30 papers on deep learning for medicinal plant identification, revealing diverse approaches across global contexts. Convolutional neural networks emerge as the primary technique, achieving high accuracy, particularly with leaf-based identification. Data collection methods vary, with manual fieldwork predominating. The review highlights challenges in scaling to larger species sets and using crowdsourced data, though strategies like data augmentation show promise. Plant state and maturity impact model performance, warranting further investigation. The geographical distribution of studies emphasises the global relevance of this research, with India and China contributing the most. Mobile applications offer potential for deployment and data collection but lack robust user feedback mechanisms for model refinement. The review identifies gaps in continuous model updating and suggests exploring incremental and zero-shot learning. Overall, the field shows promise but requires more balanced datasets and context-aware approaches to maximise real-world impact in medicinal plant identification.</p>en
dc.languageenen
dc.publisherWorld Scientific Publishing Co Pte Ltden
dc.relation.ispartofVietnam Journal of Computer Scienceen
dc.titleAdvancements in Medicinal Plant Identification Using Deep Learning Techniques: A Comprehensive Reviewen
dc.typeJournal Articleen
dc.identifier.doi10.1142/S2196888825300017en
local.contributor.firstnameTrien Phaten
local.contributor.firstnameFareeden
local.contributor.firstnameLjiljanaen
local.contributor.firstnameCesaren
local.contributor.firstnameSusan Men
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolUNE Business Schoolen
local.profile.emailfuddin@une.edu.auen
local.profile.emaillbrankov@une.edu.auen
local.profile.emailcesar.sanin@une.edu.auen
local.profile.emailshester@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSingaporeen
local.format.startpage1en
local.format.endpage35en
local.peerreviewedYesen
local.title.subtitleA Comprehensive Reviewen
local.contributor.lastnameTranen
local.contributor.lastnameUd Dinen
local.contributor.lastnameBrankovicen
local.contributor.lastnameSaninen
local.contributor.lastnameHesteren
dc.identifier.staffune-id:fuddinen
dc.identifier.staffune-id:lbrankoven
dc.identifier.staffune-id:cmaldon3en
dc.identifier.staffune-id:shesteren
local.profile.orcid0000-0001-6122-2043en
local.profile.orcid0000-0002-5056-4627en
local.profile.orcid0000-0001-8515-417Xen
local.profile.orcid0000-0001-6046-9984en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64957en
local.date.onlineversion2025-02-04-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAdvancements in Medicinal Plant Identification Using Deep Learning Techniquesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorTran, Trien Phaten
local.search.authorUd Din, Fareeden
local.search.authorBrankovic, Ljiljanaen
local.search.authorSanin, Cesaren
local.search.authorHester, Susan Men
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2025en
local.subject.for20204601 Applied computingen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2025-03-04en
Appears in Collections:Journal Article
School of Science and Technology
UNE Business School
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.