Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64742
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHarré, Michael Sen
dc.contributor.authorHarris, Adamen
dc.contributor.authorMcCallum, Scotten
dc.date.accessioned2025-02-13T21:33:26Z-
dc.date.available2025-02-13T21:33:26Z-
dc.date.issued2024-05-
dc.identifier.citationSoftware Impacts, v.20, p. 1-4en
dc.identifier.issn2665-9638en
dc.identifier.urihttps://hdl.handle.net/1959.11/64742-
dc.description.abstract<p>René Thom’s work on topological instabilities applied new methods to questions of dynamical stability that traditionally belonged to the domain of dynamical systems theorists. Topological instability focuses on universal properties of bifurcations in systems where multiple equilibria form and disappear as a function of system parameters. However, the complete mathematical description is quite abstract and the analysis benefits from graphical intuitions. Here we provide the code, in the form of a Mathematica notebook, used in our recent Games and Economic Behaviour paper (Harriset al., 2023). It illustrates our main results providing the intuition necessary to explore the bifurcations in the formal proofs.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofSoftware Impactsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMathematica code for the topological analysis of Thom’s Catastrophes in 2 × 2 economic gamesen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.simpa.2024.100652en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameMichael Sen
local.contributor.firstnameAdamen
local.contributor.firstnameScotten
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailaharris5@une.edu.auen
local.output.categoryC1en
local.grant.numberDP170102927en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber100652en
local.format.startpage1en
local.format.endpage4en
local.peerreviewedYesen
local.identifier.volume20en
local.access.fulltextYesen
local.contributor.lastnameHarréen
local.contributor.lastnameHarrisen
local.contributor.lastnameMcCallumen
dc.identifier.staffune-id:aharris5en
local.profile.orcid0000-0002-1259-1122en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64742en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMathematica code for the topological analysis of Thom’s Catastrophes in 2 × 2 economic gamesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP170102927en
local.search.authorHarré, Michael Sen
local.search.authorHarris, Adamen
local.search.authorMcCallum, Scotten
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/d2046797-64fe-4973-903b-5061ac6b9f33en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/d2046797-64fe-4973-903b-5061ac6b9f33en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/d2046797-64fe-4973-903b-5061ac6b9f33en
local.subject.for2020380303 Mathematical economicsen
local.subject.seo2020280108 Expanding knowledge in economicsen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/MathematicaHarris2024JournalArticle.pdfPublished Version988.1 kBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons