Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/64666
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brinkhoff, James | en |
dc.contributor.author | Dunn, Brian W | en |
dc.contributor.author | Dunn, Tina | en |
dc.contributor.author | Hart, Josh | en |
dc.contributor.author | Schultz, Alex | en |
dc.date.accessioned | 2025-02-07T03:07:39Z | - |
dc.date.available | 2025-02-07T03:07:39Z | - |
dc.date.issued | 2025-02 | - |
dc.identifier.citation | Precision Agriculture, 26(1), p. 1-22 | en |
dc.identifier.issn | 1573-1618 | en |
dc.identifier.issn | 1385-2256 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/64666 | - |
dc.description.abstract | <p>Optimizing the timing of rice paddy drainage and harvest is crucial for maximizing yield and quality. These decisions are guided by rice grain moisture content (GMC), which is typically determined by destructive plant samples taken at point locations. Providing rice farmers with predictions of GMC will reduce the time burden of gathering, threshing and testing samples. Additionally, it will reduce errors due to samples being taken from unrepresentative areas of fields, and will facilitate advanced planning of end-of-season drain and harvest timing. This work demonstrates consistent relationships between rice GMC and indices derived from Sentinel-2 satellite imagery, particularly those involving selected shortwave infrared and red edge bands (r=0.84, 1620 field samples, 3 years). A methodology was developed to allow forecasts of grain moisture past the latest image date to be provided, by fusing remote sensing and accumulated weather data as inputs to machine learning models. The moisture content predictions had root mean squared error between 1.6 and 2.6% and R<sup>2</sup> of 0.7 with forecast horizons from 0 to 28 days. Time-series grain moisture dry-down predictions were summarized per field to find the optimal har-vest date (22% grain moisture), with an average RMSE around 6.5 days. The developed methodology was operationalized to provide rice growers with current and projected grain moisture, enabling data-driven decisions, ultimately enhancing operational efficiency and crop outcomes.</p> | en |
dc.language | en | en |
dc.publisher | Springer New York LLC | en |
dc.relation.ispartof | Precision Agriculture | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Forecasting field rice grain moisture content using Sentinel-2 and weather data | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s11119-025-10228-2 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | James | en |
local.contributor.firstname | Brian W | en |
local.contributor.firstname | Tina | en |
local.contributor.firstname | Josh | en |
local.contributor.firstname | Alex | en |
dc.contributor.corporate | AgriFutures Australia | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | jbrinkho@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.identifier.runningnumber | 28 | en |
local.format.startpage | 1 | en |
local.format.endpage | 22 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 26 | en |
local.identifier.issue | 1 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Brinkhoff | en |
local.contributor.lastname | Dunn | en |
local.contributor.lastname | Dunn | en |
local.contributor.lastname | Hart | en |
local.contributor.lastname | Schultz | en |
dc.identifier.staff | une-id:jbrinkho | en |
local.profile.orcid | 0000-0002-0721-2458 | en |
local.profile.role | author | en |
local.profile.role | project team member | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/64666 | en |
local.date.onlineversion | 2025-01-31 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Forecasting field rice grain moisture content using Sentinel-2 and weather data | en |
local.relation.fundingsourcenote | This work was funded by AgriFutures Australia, grant PRO-013078 (Real-time remote-sensing based monitoring for the rice industry). Samples were gathered and processed by staff at the New South Wales Department of Primary Industries and Regional Development and Sunil Jha. We are grateful for helpful discussions and practical suggestions from the Rice Extension team, including Mark Groat, Peter McDonnell, Chris Quirk and Anna Jewell. We appreciate the suggestions the reviewers and editor of this paper provided, which resulted in an improved manuscript. Open Access funding enabled and organized by CAUL and its Member Institutions. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Brinkhoff, James | en |
local.search.author | Dunn, Tina | en |
local.search.author | Hart, Josh | en |
local.search.author | Schultz, Alex | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/fb0a0156-8c41-4662-be9a-653ea5356f5c | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2025 | en |
local.year.published | 2025 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/fb0a0156-8c41-4662-be9a-653ea5356f5c | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/fb0a0156-8c41-4662-be9a-653ea5356f5c | en |
local.subject.for2020 | 300206 Agricultural spatial analysis and modelling | en |
local.subject.for2020 | 401304 Photogrammetry and remote sensing | en |
local.subject.seo2020 | 260308 Rice | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/ForecastingFieldRiceBrinkhoff2025JournalArticle.pdf | Published version | 3.18 MB | Adobe PDF Download Adobe | View/Open |
This item is licensed under a Creative Commons License