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Abstract
Optimizing the timing of rice paddy drainage and harvest is crucial for maximizing yield 
and quality. These decisions are guided by rice grain moisture content (GMC), which is 
typically determined by destructive plant samples taken at point locations. Providing rice 
farmers with predictions of GMC will reduce the time burden of gathering, threshing 
and testing samples. Additionally, it will reduce errors due to samples being taken from 
unrepresentative areas of fields, and will facilitate advanced planning of end-of-season 
drain and harvest timing. This work demonstrates consistent relationships between rice 
GMC and indices derived from Sentinel-2 satellite imagery, particularly those involving 
selected shortwave infrared and red edge bands (r=0.84, 1620 field samples, 3 years). A 
methodology was developed to allow forecasts of grain moisture past the latest image 
date to be provided, by fusing remote sensing and accumulated weather data as inputs to 
machine learning models. The moisture content predictions had root mean squared error 
between 1.6 and 2.6% and R2 of 0.7 with forecast horizons from 0 to 28 days. Time-series 
grain moisture dry-down predictions were summarized per field to find the optimal har-
vest date (22% grain moisture), with an average RMSE around 6.5 days. The developed 
methodology was operationalized to provide rice growers with current and projected grain 
moisture, enabling data-driven decisions, ultimately enhancing operational efficiency and 
crop outcomes.

Keywords  Rice · Grain moisture · Harvest timing · Machine learning · Remote 
sensing · Crop maturity
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Introduction

Precision agriculture technologies aim to improve productivity and environmental outcomes 
by optimizing field management. While spatial aspects of field management practices, such 
as soil improvement, seed and nutrient distribution and yield mapping have been a key focus 
(Nowak, 2021), the timing of crop management operations is equally critical. In rice, the 
timing of sowing (Brinkhoff et al., 2023), fertilizer applications (Peng & Cassman, 1998; 
Dunn et al., 2014), water application (Dunn & Gaydon, 2011; Humphreys et al., 2006), field 
drainage and harvest (McCauley & Way, 2002; Counce et al., 1990) all significantly impact 
yield, quality, water use and emissions.

Determining the optimal time to cease irrigation or drain fields is a critical end-of-season 
decision for irrigated rice growers. This decision must balance the need to ensure that the 
grains have reached maximum dry matter accumulation (physiological maturity) (Dingkuhn 
& Le Gal, 1996), with the need to avoid delays in harvest. Harvest timing is pivotal (Wang et 
al., 2021), as harvesting too early can result in grains with high moisture content that require 
additional drying and can incur processor penalties, while harvesting too late can lead to dry 
grains that are susceptible to fissuring (Siebenmorgen et al., 2007) particularly if there is 
rain during the dry-down period (R. Lu et al., 1995). This can cause a reduction in the pro-
portion of unbroken grains after milling (head rice yield) (Calderwood et al., 1980), which 
can lead to reduced profit. In Australia, harvest is recommended when rice has reached 22% 
moisture (Ward et al., 2021), and similar values have been found to result in optimal head 
rice yield in the US mid-south (Siebenmorgen et al., 2007).

For the broader industry, accurate forecasts of grain moisture content (GMC) across 
many fields are valuable to plan harvest operations, manage grain storage and transport 
logistics. Integrating harvest timing prediction with yield forecasts (Brinkhoff et al., 2024) 
adds further value to rice processors in managing and marketing grain. An additional benefit 
at the industry scale is enabling powerful analytics of the drivers of grain quality (Clarke et 
al., 2024), so that accurate extension messages can be delivered to farmers with the goal of 
improving outcomes in future seasons.

Despite the importance of estimating GMC in guiding drainage and harvest decisions, 
common practice often relies on point measurements such as the “squeeze-test”, moisture 
meters or more recent instruments (Flor et al., 2022; Yang et al., 2021), which are not scal-
able and fail to capture spatial variability across large fields. Spatial variability of rice matu-
rity can be caused by factors such as variations in water temperature (Sharifi et al., 2018), 
phenology, soil type, and nitrogen uptake (Brinkhoff et al., 2023). This variability renders 
point samples unreliable for estimating the field average GMC or the spatial variability of 
GMC, particularly in the context of multi-hectare mechanized fields.

To address these challenges, researchers have sought to provide more scalable and spatial 
estimates of GMC in grain crops. For instance, optimum harvest timing for soy bean and 
maize has been estimated using weather data and Henderson-Perry dry-down equations 
(Martinez-Feria et al., 2019; Chazarreta et al., 2023), though they relied on in-field measure-
ments of moisture at physiological maturity to determine initial conditions. Other work used 
data-driven models with inputs including days since sowing and weather to predict GMC 
(Abdollahpour et al., 2020). However, weather and sowing timing may not provide enough 
information to accurately predict GMC, as factors such as variety and nitrogen status also 
have an effect (Brinkhoff et al., 2023).
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Remote sensing is a promising tool to estimate GMC across many large fields. Strong 
correlations between ratios of reflectances and panicle dry biomass have been demonstrated 
Peng et al. (2024), noting that remote sensing doesn’t observe the panicles themselves but 
rather senses pigments that are related to grain ripening. Other studies have shown relation-
ships between GMC and the normalized difference vegetation index (Dunn & Dunn, 2021), 
between GMC and remotely sensed canopy chlorophyll content (Xu et al., 2019), and have 
developed machine learning models to predict GMC from multispectral and hyperspectral 
imagery (Wu et al., 2024). However, many of these studies are limited by using data from a 
single season and small study area, raising questions about generalizability to new seasons 
and sites (Filippi et al., 2025). Recently, Yang et al. (2025) proposed using multispectral 
imagery collected using unmanned aerial vehicles to predict GMC, achieving low errors in 
a small area. However, as they noted, there is a need to use satellite imagery for broad-scale 
application, and to include weather data to enable forecasting GMC beyond the image col-
lection date.

This work aims to develop predictive models for rice GMC using Sentinel-2 satellite data 
and weather data, using three years of field GMC samples collected from many commercial 
rice crops spread across the primary growing region in Australia. First, the relationship 
between rice GMC and co-incident imagery was investigated. Then machine learning mod-
els were trained, integrating input features from satellite imagery and accumulated weather 
variables, allowing projection of GMC beyond each image date by integrating weather fore-
casts. The model performance was assessed in terms of both GMC prediction accuracy, and 
the accuracy of predicted optimum harvest date (where GMC=22%).

Methods

Field data

There were a total of 247 sites over the three years, which are shown on the map in Fig. 1. 
There were two types of sites. The first type were point locations in larger commercial rice 
fields. These had the location marked with a pole and the coordinates were recorded using a 
GPS system. The second type of sites were large experiment plots with a range of nitrogen 
rates, also located in commercial fields. There were 3–9 plots in each experiment, and each 
plot is referred to as a site. Nitrogen affects flowering and dry-down (Brinkhoff et al., 2023), 
so these plots were included with the aim of generating data to allow the GMC models to 
learn these effects. The plots were large enough (greater than 30 m per side) to ensure they 
enclosed at least one Sentinel-2 pixel. The GMC samples were collected from the middle of 
each plot. The plots were clearly visible in the imagery, so the sample locations were refined 
using image inspection.

Each site was sampled on multiple dates (see Table 1), targeting GMC values from 30 
to 18%. There were on average 6–7 samples per site with 4–6 days between samples. The 
7 rice varieties (and number of samples per variety) were Koshihikari (7), Opus (7), Langi 
(10), Viand (101), Sherpa (121), Reiziq (150) and V071 (1213). V071 was the dominant 
variety grown in the area, hence the larger number of samples for this variety.

Grain moisture content (GMC %) was determined for each sample using the follow-
ing method. Samples were collected after morning dew had evaporated. Three hand grabs 
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were cut and bagged. These were then threshed, obtaining approximately 500 g of grain. 
The moisture content of the samples were determined on the same day using near-infrared 
transmission instruments, the Cropscan 2000B (Next Instruments, Condell Park, Australia). 
These instruments had previously been calibrated using 197 rice samples that had their 
moisture content determined using the two-stage air-oven reference method (AACC, 1999), 
with GMC ranging from 12 to 30%. The calibration was tested on independent samples with 
an R2 of 0.97.

Remote sensing data

For each site, a time-series of Sentinel-2 data was generated using Google Earth Engine 
(Gorelick et al., 2017), by computing the pixel reflectance value at each site’s point loca-
tion. The reflectances in the ten bands with 10–20 m resolution were extracted, as listed in 
Table 2. This process was performed using both top of atmosphere (TOA, L1C) and surface 

Year Sites Number of
samples

Average samples
per site

Average days
between samples

2022 75 451 6 6
2023 77 536 7 5
2024 95 622 7 4

Table 1  Number of sites and 
samples for each year
 

Fig. 1  Map of sites where rice grain moisture content was sampled each year (total of 247 sites); the inset 
shows the study area in relation to Australia
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reflectance (SR, L2A) data in order to compare the accuracy of GMC models built using 
these different processing levels.

The Cloud Score + product (Pasquarella et al., 2023) was used to mask cloud and 
cloud shadow. This product is based on a regression model, trained using a video analysis 
approach, and provides a continuous cloud score for each pixel. Pixels with a cloud score 
below 0.7 were masked.

After removing data affected by cloud, the time-series in each of the reflectance bands for 
each sample site was interpolated to a daily basis and smoothed using a Whittaker smoother 
(Eilers, 2003). This algorithm has advantages over the commonly used Savitzky-Golay fil-
ter, including smoother behavior at the end points of data, which is important for real-time 
applications (Schmid et al., 2022). The smoothing parameter λ was set to 500, which pro-
vided a good balance between removing noise, while retaining the real detail of the crop 
time-series.

Feature set name Name Details
Rice variety Variety Categorical [Reiziq, V071, 

Langi, Sherpa...]
Sentinel-2 
reflectances

B Blue (490nm, 10m)
G Green (560nm, 10m)
R Red (665nm, 10m)
RE1 Red edge (705nm, 20m)
RE2 Red edge (740nm, 20m)
RE3 Red edge (780nm, 20m)
NIR1 Near infrared (835nm, 10m)
NIR2 Near infrared (865nm, 20m)
SWIR1 Shortwave infrared (1610nm, 

20m)
SWIR2 Shortwave infrared (2200nm, 

20m)
Weather Days Number of accumulated days

Tmin Minimum daily temperature (0C)
Tmax Maximum daily temperature (0C)
Srad Solar radiation (MJ/m2)
RH(Tmax) Relative humidity at time of 

Tmax (%)
RH(Tmin) Relative humidity at time of 

Tmin (%)
ET Short crop reference evapotrans-

piration (mm)
DD Degree days, base 10 (0C)
Rain Daily rainfall (mm)

Combinations All ND All 45 independent normalized 
difference
spectral indices ND(b1,b2), 
where b1,b2
are the reflectances listed above

All weather All weather parameters listed 
above

Temps Tmin and Tmax

Table 2  Variables used in grain 
moisture prediction models
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Rather than limiting the models to use a small number of indices based on pre-conceived 
assumptions, the normalized difference spectral indices (NDSIs) based on all independent 
combinations of reflectances were derived:

	 ND(b1, b2) = (b1 − b2)/(b1 + b2)� (1)

For example, ND(NIR,R) corresponds to NDVI. In total, there were 45 independent NDSIs 
computed from the 10 reflectances (Table 2).

Weather data

Daily weather data was downloaded from the SILO spatially-interpolated dataset (Jeffrey 
et al., 2001), at a 0.1◦ grid. Comprehensive accuracy metrics for this weather dataset are 
reported in Jeffrey et al. (2001). For example, cross validation maximum and minimum 
temperatures across Australia had an RMSE of approximately 1.4 and 1.9 ◦C respectively, 
although the errors were lower in the study area (southern NSW). For each site, the weather 
data from the closest location was used. Variables included minimum and maximum tem-
peratures and humidity, evapotranspiration, degree days, solar radiation and rainfall, as 
shown in Table 2.

Data engineering

The first hypothesis was that rice GMC can be predicted from remote sensing data acquired 
on the same day (co-incident) as the sample date, as previous work has demonstrated GMC 
is correlated with NDSIs (Dunn & Dunn, 2021). The second hypothesis was that accumu-
lating weather data from each image date could provide the information needed to forecast 
GMC beyond the image date. Therefore, the developed models take as inputs all the NDSIs 
at a given date, and weather variables accumulated on a daily basis from that image date (dI) 
to each GMC prediction date (dP).

To train the models to forecast GMC using a combination of image and weather data, 
for each GMC field sample, multiple data rows were created using multiple image dates 
that preceded the sample date. The time difference between the image date and sample 
date is referred to as the ‘forecast horizon’ (dP-dI). This forecast horizon was limited to a 
maximum of 28 days. When the forecast horizon was 0 days (i.e., the image date equals the 
sample date), it is called a ’co-incident’ prediction, as accumulated weather variables are 
0, so it uses only the satellite data. For longer forecast horizons, the model combines the 
satellite data with accumulated weather variables for the days between the image date and 
sample/prediction date. This data engineering process is illustrated in Fig. 2, and specified 
as follows: 
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Algorithm 1  Construct data rows

After this process, a dataset with 46,980 rows was obtained, which is 1620 (samples) × 
29 (forecast days from 0–28).

In the operational scenario, the system uses the most recent cloud-free image and 
weather data (observations and forecasts) beyond this to predict future GMC values. This is 
important to allow a rice grower to plan ahead for field drainage and harvest operations. To 
model GMC at dates before the latest image date (i.e. where image data co-incident with the 
desired prediction dates is already available), the accumulated weather variables are zero, 
so only remote sensing data influences model predictions.

Model training

A range of experiments were performed to assess GMC machine learning (ML) model per-
formance. In experiment 1, the accuracies obtainable using 4 machine learning algorithms 
(discussed below), and different combinations of remote sensing and accumulated weather 
features, were compared. In experiment 2, for the best algorithm and combination of fea-
tures, the performance using TOA and SR remote sensing data was compared. In experiment 
3, the selected model accuracy in co-incident (predicting GMC at an available image date) 

Fig. 2  Diagram of data processing and modeling, showing how image and weather data is integrated to 
provide grain moisture content (GMC) predictions at each date of interest, and predictions are summa-
rized to determine the optimal harvest date, where NDSIs are the normalized difference spectral indices
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and forecast (predicting GMC past an image date) scenarios were assessed. These are dis-
cussed in more detail in the following.

The three seasons in the dataset varied in terms of phenology progression and weather. 
Therefore, to robustly evaluate prediction accuracy of various models under variable sea-
sonal scenarios, a leave-one-year-out (LOYO) methodology was used. First, models were 
trained using [2022,2023] data and tested on [2024] data, then [2022,2024]→[2023], then 
[2023,2024]→[2022]. This methodology allows robust assessment of errors when applying 
the models to forecast GMC in a new season that no ground-truth data has been collected 
for (Filippi et al., 2025).

The results from four algorithms were compared. Lasso is a linear regression algorithm 
that uses L1 regularization, which penalizes the absolute value of the coefficients, result-
ing in less important coefficients being shrunk to zero. The input features were normalized 
using their mean and standard deviation from the training data before fitting the model. The 
regularization hyperparameter “alpha” was optimized as discussed below. Ridge, is another 
linear regression algorithm that uses L2 regularization, which penalizes the square of the 
coefficients, resulting in less important coefficients being shrunk towards (but not to) zero. 
The same normalization and hyperparameter optimization as for lasso was performed. Ran-
dom forest (RF) regression is a nonlinear algorithm that ensembles decision trees based on 
subsamples of the training data and features, and averages their outputs. The hyperparam-
eters that were tuned for RF were the number of estimators and maximum features. Light 
gradient boosting machine (LGB) is an efficient nonlinear algorithm that uses an ensemble 
of gradient-boosted trees, which are grown leaf-wise (Ke et al., 2017). The tuned hyperpa-
rameters for LGB were the number of leaves and minimum child samples. Many functions 
from the scikit-learn (Pedregosa et al., 2011) libraries were used during this process.

In order to optimize the model hyperparameters mentioned above, a grid search method 
was employed. The training data was split into four cross validation folds of year × latitude 
(above and below 35◦S) in each LOYO experiment. This reduced the chance of the models 
overfitting either temporally or spatially.

In terms of feature selection, the performance of models using only a single ND (NDVI 
and also the ND that was found to be most correlated with GMC) were assessed, and com-
pared with models including all 45 NDs. Some of the algorithms are robust in the presence 
of co-correlated predictors, for example ridge shrinks such predictor’s coefficients together 
(Hastie et al., 2009). In addition, multiple models were trained and assessed using different 
combinations of weather variables, particularly to assess the relative contributions of tem-
peratures, rainfall and other predictors to GMC dry-down prediction accuracy.

Models were evaluated by how well they predicted the moisture in each of the 3 test 
years. Metrics evaluated included the root mean squared error (RMSE) of the moisture 
predictions (%), the R2 score for regression models (as implemented in scikit-learn) and 
the average bias between actual and predicted moisture. As a second evaluation step, the 
time-series of moisture predictions for each site were summarised to find the date where 
the moisture predictions crossed the optimum harvest moisture (22%), and this predicted 
date was compared to the actual 22% date obtained by linearly interpolating between the 
moisture samples on a daily basis to give an error in days.
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Generating in-field spatial grain moisture predictions

Since the models were developed using samples taken at point locations, which corre-
sponded to image pixels, it was possible to provide spatial maps of moisture predictions at 
each Sentinel-2 image date. The accumulated weather coefficients were set to 0 so the model 
predicted moisture co-incident with the selected image date. The ridge regression model 
was used, which allows simple porting to GIS systems as a linear equation. The model coef-
ficients were denormalized and an equation relating GMC to the 45 NDSIs was generated 
and implemented in Google Earth Engine.

Results

Seasonal data

Figure 3a shows all sample data for the three years. The distribution of sample GMCs was 
similar between the years. There was considerable variation in the average optimal harvest 
dates (GMC of 22%). The 2023 crops were later on average (mean 9 April), and those in 
2024 were earlier (mean 23 March). This can be explained, firstly, by the sowing dates 
(Fig. 3b). There was great variation in 2023 sowing dates, with many being sown later due 

Fig. 3  (a) The 1620 rice grain moisture content samples (left, lines show trajectory for each field) and 
distribution (right) for the 3 years; (b) the distribution of sowing dates per year; c the minimum and maxi-
mum temperatures, daily (thin lines) and 30-day rolling average (thick lines)
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to flooding in October-November. Secondly, the weather in 2024 was warmer during both 
the vegetative stages (December) and during the dry-down period (March-April) (Fig. 3c) 
than the other years, which accelerated crop progression.

Relationship between grain moisture content and co-incident remote sensing data

Figure  4 shows the average reflectances at each wavelength for samples with GMCs of 
21–23% and 27–29%. For higher GMC samples, the reflectances were lower in the B-RE1 
bands and in the SWIR1-SWIR2 bands, while the reflectances were higher in the RE2-NIR2 
bands. The distinction between the reflectances at different GMCs was consistent between 
years. These results support the hypothesis that rice GMC may be determined by multispec-
tral imagery of the canopy.

Secondly, the correlation between all 45 NDSIs and GMC was calculated for all sam-
ples (Fig.  5a). NDVI=ND(NIR,R) had a Pearson’s r of 0.77 and the relationship was 
somewhat variable between years (Fig.  5b). The strongest correlation was observed for 
ND(SWIR1,RE3), with r=−0.84, and the relationship was consistent between years (Fig. 5c) 
and was slightly nonlinear. Generally, the NDSIs that combined shortwave infrared bands 
with red-edge or near infrared bands (RE2-NIR2) had the highest correlations (|r| > 0.8
). This can be related to the reflectance profiles (Fig. 4), where for higher GMC the SWIR 
reflectances are lower and the RE2-NIR2 reflectances are higher, leading to greater differ-
ences in the numerator of the respective NDSIs (Eq. 1).

Forecast model example

An example of the data input to a GMC forecast model, with the actual and predicted mois-
ture values, is shown in Fig. 6. The Sentinel-2 observations of ND(SWIR1,RE3) (the NDSI 
most correlated with GMC) are shown, as well as the smoothed daily data. In this example, 
that latest clear image was from 10-March. Before this date the accumulated weather vari-
ables were 0, while afterwards, the accumulated weather variables take effect. The model 
can then predict the GMC at each day before and after the latest image date using a combi-
nation of these variables. In this example, the model predicted the moisture would cross the 
optimum harvest moisture of 22% on 22-March, i.e. 12 days forecast past the latest image 

Fig. 4  Reflectance profile of samples at high and low grain moisture content (GMC)
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date. The actual 22% GMC date (found by linear interpolation of the sample data) was 
20-March, giving an error of 2 days.

Forecast model selection

After training models with various combinations of the input variables in Table  2, and 
assessing predictions on each of the 3 held-out test years in turn, model accuracies in pre-
dicting the GMC were calculated, as shown in Fig. 7 (experiment 1). These results were 
obtained using TOA Sentinel-2 data. Generally, the lowest errors were obtained in 2022, 
and the highest in 2024.

Fig. 5  a Correlation coefficient between moisture and normalized difference spectral indices ND(B1,B2); 
b the relationship between NDVI=ND(NIR,R) and grain moisture content (GMC); c the relationship 
between most correlated index ND(SWIR1,RE3) and GMC
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The best model overall was ridge regression with All ND + Temps variables. For this 
model, the difference in accuracy using SR instead of TOA data was then investigated 
(experiment 2). The average of the 3 year RMSEs was 2.09% for TOA, and 2.12% for SR. 
Therefore, given these insignificant differences in results (with TOA being slightly better), 
TOA data is used in the following results.

In terms of remote sensing variables, the worst predictions were obtained using 
NDVI=ND(NIR,R), with ND(SWIR1,RE3) being a much better remote sensing predictor 
as also noted in the correlation analysis above. However, better results again were obtained 
when all 45 NDSIs were included, further reducing errors by about 20% (see Fig. 7).

There was no advantage to using all weather predictors (including ET, Srad, RH, DD, 
Rain, Table  2) compared with just using accumulated temperatures. Using accumulated 
temperatures proved more effective than accumulated days, for example the ridge models 
with accumulated days exhibited a 5% higher RMSE compared to those using accumulated 
temperatures. Adding rain or variety to temperatures did not improve average RMSE for the 
highest performing algorithms (Lasso, ridge and LGB). Therefore, with the GMC sample 
dataset in this study, temperatures were sufficient to model dry-down past the most recent 
remote sensing image. It is possible that larger datasets with more weather variability may 
be able to exploit relationships between the other weather variables and dry-down.

Fig. 6  Example data from one 2024 rice field, showing (top) remote sensing, weather data and (bottom) 
GMC sample and predictions from the ridge regression model with all normalized difference spectral 
indices, minimum and maximum temperatures (All ND+Temps)
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Of the nonlinear algorithms, LGB usually performed better than random forest, except 
when all weather variables were included, possibly indicating LGB overfitting to training 
data in this case. However, the best results overall were obtained with the linear algorithms, 
with ridge generally giving the lowest errors.

Based on the above results, the models based on the ridge regression algorithm with all 
NDSIs and accumulated minimum and maximum temperatures (All ND + Temps) were 
selected for further investigations.

Model accuracy in co-incident and forecast scenarios

Using the selected model parameters discussed above, the GMC predictions as a function 
of forecast days (i.e. days beyond the end of a truncated remote sensing time-series) were 
assessed (experiment 3). With 0 forecast days (i.e., predicting moisture on a date where 
there is remote sensing data available), the RMSE was 2.08%, the bias (average error) was 
0% and R2 was 0.73 (Fig. 8a). The results were slightly worse at 20 days forecast (using 
accumulated temperatures for 20 days beyond the last remote sensing image), with RMSE 
increasing by 0.11%, as shown in Fig. 8b. The GMC RMSE for each test year versus fore-
cast days is given in Fig. 8c. Minimum errors were obtained between 5–10 days forecast, 
indicating the model is optimizing between the extremes of 0 days forecast and 28 days 
forecast. The highest errors overall were obtained in 2024, whereas 2022 had the lowest 
minimum errors, but the errors degraded more sharply in 2022 as the forecast horizon was 
extended.

The actual and predicted date when the moisture dropped below the optimum harvest 
moisture of 22% was determined for each site, for forecast horizons from 0–28 days (in 
steps of 4). An example of this process for one 2024 field was shown in Fig. 6, where the 

Fig. 7  Comparison of model performance across the 3 test years for a variety of algorithms and feature 
sets (ND=normalized difference spectral indices, Temps=accumulated minimum and maximum tempera-
tures since the image date, All weather=accumulation of all weather variables, Days=accumulated days, 
Rain=accumulated rainfall, LGB=Light gradient boosting machine, RF=Random forest); with bar height 
showing the mean, and the points showing the RMSE for each of the 3 leave-one-year-out test years; and 
the horizontal orange line showing the best average model performance (ridge with All ND+Temps with 
RMSE=2.09%)
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error at 12 days forecast was 2 days. The actual and predicted dates are compared in Fig. 9. 
Note that of the 247 sites, 228 had at least one sample with GMC below 22%, so the other 
19 sites were excluded from this analysis. The RMSE was 6.6 days for 0 days forecast 
across the 3 test years, and the bias was 1.7 days (predicted slightly late on average) and 
R2 was 0.77 (Fig. 9a). The results at 20 days forecast were similar (Fig. 9b). The reason for 
the similarity between 0 and 20 days forecast is suggested by Fig. 9c, where the minimum 
errors are obtained between 8–16 days forecast, with the errors rising for shorter and longer 
horizons, again indicating the models have optimized for minimum errors across the whole 
training dataset, which included all forecast horizons from 0–28 days.

In-field spatial predictions

A ridge regression model was trained using 2022–2023 data, and the model was ported 
to Google Earth Engine as a linear equation. The example in Fig. 10 shows a number of 
2024 rice fields, comparing the predicted GMC from the 25-March Sentinel-2 image with 
samples taken on the same date. For the 6 samples, the moisture content was predicted with 
R2=0.7, RMSE=1.95% and bias=0.5%.

Fig. 8  Grain moisture content (GMC) prediction errors at a 0 and b 20 days forecast from the respective 
remote sensing image date, and c summary of RMSE for 0–28 forecast days
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Fig. 10  a Grain moisture content (GMC) predictions for fields using 25-March Sentinel-2 image; b grain 
moisture samples taken at point locations in the fields on the same date

 

Fig. 9  Grain moisture content (GMC) forecast accuracy at predicting the 22% crossing date, with a 0 and 
b 20 days forecast, and c summary of RMSE of 22% date predictions for 0–28 forecast days
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Discussion

This study demonstrated firstly that rice GMC has a consistent relationship with normal-
ized difference spectral indices computed from remotely sensed reflectances of the canopy. 
Secondly, a feature engineering process was developed that enables the forecasting of GMC 
beyond the latest available remote sensing image date by accumulating weather variables 
from that date. Investigations of many machine learning algorithms and input variables 
revealed that ridge regularized linear regression with 45 normalized difference spectral indi-
ces and accumulated minimum and maximum temperatures provided optimal predictions. 
The models could be applied to per-field time-series data to predict optimum harvest date 
per field, and also deployed in Earth Engine using remote sensing data to provide maps of 
the spatial variability of GMC.

Remote sensing data and indices

In line with other recent research, this work has shown that indices derived from optical 
remote sensing data are effective predictors of GMC. For example, Brinkhoff et al. (2023) 
found that rice nitrogen status affected time from flowering to harvest readiness, suggesting 
that remote sensing may have potential to parameterize such impacts. Peng et al. (2024) 
found that the difference between absorption coefficients in the blue and red bands was 
correlated with rice panicle dry biomass, with R2 = 0.81, which they attributed to rela-
tive changes in chlorophyll and carotenoid absorption during senescence. Dunn and Dunn 
(2021) found that rice GMC was correlated with NDVI, though the relationship varied with 
variety. Similarly. the current work showed that the relationship between NDVI and GMC 
also varied with season. However, the relationship with another spectral index based on 
a shortwave infrared (SWIR1 at 1610nm) and red edge band (RE3 at 780nm) had higher 
correlation and the relationship was consistent between seasons. The wavelength of the 
red edge band was important, as the correlation was very low when using a shorter wave-
length Sentinel-2 band (RE1 at 705nm), because as Fig. 4 indicated, the rise in reflectance 
in SWIR1 and RE1 bands with decreasing GMC is similar, whereas the change is opposite 
and thus magnified for SWIR1 and RE3.

However, even when using this optimal NDSI ND(SWIR1,RE3) in models, the inde-
pendent test results had a relatively high RMSE around 2.5% (Fig. 7). Model performance 
was greatly improved when all 45 independent NDSIs were used, with RMSE reducing to 
around 2.1%. Utilizing this large number of features relied on the machine learning algo-
rithms limiting model complexity with hyperparameters optimized using leave-one-year-
region-out cross validation.

While many works assume that surface reflectance (SR) remote sensing data will provide 
superior predictions to top of atmosphere (TOA) data, this research explicitly examined 
models trained and tested using Sentinel-2 TOA (L1C) and SR (L2A) data. The results 
were similar, with TOA even being slightly better (2.09 vs 2.12% RMSE). Though this 
may be considered counter-intuitive, other works have likewise found little if any benefit 
of using SR instead of TOA data when coupled with ML models (Wolters et al., 2021; 
Brinkhoff et al., 2022). This may possibly be due in part to errors in atmospheric correc-
tion processes, and models learning to correct for variances in atmospheric effects if suf-
ficient data and features are supplied to the model (Medina-Lopez, 2020). The use of TOA 
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data brings further benefits of requiring less processing compute and time (Estévez et al., 
2022), and consistency across datasets stored in different repositories, so a model trained 
using data from one repository can be applied to data stored from a different repository if 
needed (whereas the atmospheric correction used to generate SR products may be inconsis-
tent between repositories).

Weather data for forecasting beyond the latest remote sensing image

The weather data used in this study was from the SILO dataset, which processes observa-
tion data to a daily time step and spatially interpolates between weather stations (Jeffrey et 
al., 2001). We acquired this data at a 0.1◦ grid, approximately 10km. As the terrain in the 
study area is relatively flat, there is unlikely to be significant variation in conditions at this 
scale. However, water bodies, such as those in rice fields, may cause local variation in some 
weather parameters. Incorporating these effects to adjust weather forecasts would be chal-
lenging, but may provide some accuracy improvements.

The developed methodology of using weather variables accumulated on a daily basis 
past the latest remote sensing image to forecast GMC was successful to extend the predic-
tion horizon. The models had a u-shaped error profile from 0 to 28 days forecast, indicating 
the models optimized for errors in the middle of the forecast range. Models trained using 
accumulated temperatures had around 5% lower RMSE compared to simply accumulat-
ing days, indicating the models were able to learn the impact of weather conditions on the 
rate of rice GMC dry-down. In contrast, some studies did not find conclusive advantage of 
including weather in dry-down model parameters (Martinez-Feria et al., 2019; Brinkhoff et 
al., 2023). In order for models to learn predictive features from weather data, a significant 
degree of weather variability in the training dataset is needed. The current study included 
a cold (2023) and a hot (2024) year. Similarly (Chazarreta et al., 2023) used a dataset with 
a wider range of sowing dates, and hence variability in weather conditions during various 
stages of crop phenology, finding that including weather variables in the dry-down coef-
ficient did offer benefit. The models developed in this work could be improved by utiliz-
ing additional seasons of data with a wider range of weather conditions, which also may 
potentially demonstrate that incorporating weather variables beyond temperature enhances 
prediction accuracy.

Operational implementation

The developed methodology has been incorporated into an operational near-real-time rice 
monitoring system. Each grower can access per-field information, including phenology, 
nitrogen, growth trajectories and the GMC forecasts this work focused on. These GMC 
forecasts facilitate improved advance planning of the timing of field drainage and harvest 
for each field.

To do this, the system processes Sentinel-2 remote sensing data for each field as soon as 
it is available. Then weather observations and forecasts are combined to provide the most 
accurate expectation of conditions at each date (Brinkhoff et al., 2023). Weather forecasts to 
16 days are obtained from the Global Forecast System data, produced by the National Cen-
ters for Environmental Prediction, and which are available in Earth Engine. This provides 
the required weather variables at a 3-hour interval that are summarized to a daily basis (e.g. 
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daily minimum and maximum temperatures and total rainfall), to produce variables that 
align with the SILO observation data. To forecast grain moisture beyond 16 days, the aver-
age of observations from the SILO dataset at each date and location since 2000 is used. As 
model predictions are dependent on weather forecast accuracy, they are thus more accurate 
at shorter forecast horizons. GMC forecasts are updated using the latest remote sensing and 
weather data on a daily basis.

This is expected to reduce farmer resources devoted to visiting many fields spread over 
large distances to gather field samples. It also has the advantage of using data from across 
entire fields, as it is based on spatially distributed remote sensing data, rather than point 
sample locations, which may misrepresent the GMC status of the field as a whole.

Further research

The developed models were able to predict the date a field will reach a given moisture level, 
for example the optimum harvest moisture of 22%. This can help support decisions lead-
ing to improved grain quality. One topic that needs further research is to use these models 
to also optimize field drainage dates. This is more complicated, as many factors impact on 
the drainage date decision. These factors include the importance of reaching physiological 
maturity before imposing any water stress to ensure yield potential is reached (Counce et al., 
1990) and to minimize chance of stem weakening and lodging (Dunn & Dunn, 2023), the 
impact of field layout and surface conditions on time for water to drain (North et al., 2010), 
evapotranspiration variability affecting how quickly residual water and soil moisture is used 
(Linquist et al., 2015), and the need to ensure fields are dry enough to enable trafficability 
by mechanized harvesters.

While the models were able to predict optimum harvest date with reasonable accuracy 
(RMSE around 6.5 days and R2 above 0.75 and bias less than 3 days), further research 
should aim to reduce these errors further. The samples in this study were not distributed 
evenly among rice varieties, but rather reflected the proportions of each variety currently 
grown in the study area. This may be the reason the models were not improved by adding 
variety as a model variable. Further work should include evaluation of the impact of variety 
on models, which may reduce errors for varieties that aren’t as strongly represented in train-
ing data. Additionally, including other variables in the predictor sets may further improve 
the models, such as flowering date, soil type and field drainage parameters (e.g. slope and 
roughness).

The models in this paper were calibrated using field samples taken from point locations. 
Several sources of error in this process could contribute to reduced precision from model 
predictions. Firstly, while sampling locations targeted areas with relatively uniform crop 
vigor, there was significant variability in grain moisture across many fields (Fig. 10a). The 
Sentinel-2 pixels are at 10 or 20 meters depending on band, so that point samples may not 
always accurately describe the mean of the moisture content within a whole pixel. Addi-
tional errors may be introduced by the grain moisture content measurements. To mitigate 
these effects, this study used a very large number of samples taken across many fields and 
from multiple seasons, reducing the impact of errors of individual samples.

The results demonstrated that remotely sensed reflectances have a strong relationship 
with rice grain moisture content. The samples included diverse seasons, management strat-
egies, varieties and biomass. However, when scaling up to cover all pixels within many 
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fields across entire growing regions, it is possible that factors such as pest damage, dis-
ease and weeds may influence retrieved reflectances and thus reduce the accuracy of grain 
moisture content predictions. If such cases are relatively common, it may be necessary to 
develop a preliminary step that excludes unrepresentative or non-rice pixels from within 
field boundaries.

This work considered multi-spectral data. Data from thermal infrared and synthetic aper-
ture radar sensors could also be exploited to improve GMC prediction models, as these con-
tain information related to the water status of surfaces (Steele-Dunne et al., 2017; Khanal 
et al., 2017). This point will become increasingly pertinent as higher spatial and temporal 
resolution data from thermal and radar sensors is made available.

Conclusion

A methodology was developed to enable the prediction of rice grain moisture content (i) 
from co-incident remote sensing imagery and (ii) beyond the latest available image by using 
accumulated weather forecast data. For the three years and 247 sites, the average moisture 
prediction error (RMSE) was 2.1% and the average prediction of the optimum harvest date 
(22% moisture) had an RMSE around 6.5 days. The models can be operationalized in rice 
monitoring systems to provide daily updated predictions, which will provide benefits to rice 
farmers in supporting decision-making regarding optimal field drainage and harvest timing 
with the aim of reaching the highest possible yield and quality.
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