Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/64586
Title: | Graph Neural Network Aided MU-MIMO Detectors |
Contributor(s): | Kosasih, Alva (author); Onasis, Vincent (author); Miloslavskaya, Vera (author) ; Hardjawana, Wibowo (author); Andrean, Victor (author); Vucetic, Branka (author) |
Publication Date: | 2022-09 |
Early Online Version: | 2022-07-18 |
DOI: | 10.1109/JSAC.2022.3191344 |
Handle Link: | https://hdl.handle.net/1959.11/64586 |
Abstract: | | Multi-user multiple-input multiple-output (MU-MIMO) systems can be used to meet high throughput requirements of 5G and beyond networks. A base station serves many users in an uplink MU-MIMO system, leading to a substantial multi-user interference (MUI). Designing a high-performance detector for dealing with a strong MUI is challenging. This paper analyses the performance degradation caused by the posterior distribution approximation used in the state-of-the-art message passing (MP) detectors in the presence of high MUI. We develop a graph neural network based framework to fine-tune the MP detectors’ cavity distributions and thus improve the posterior distribution approximation in the MP detectors. We then propose two novel neural network based detectors which rely on the expectation propagation (EP) and Bayesian parallel interference cancellation (BPIC), referred to as the GEPNet and GPICNet detectors, respectively. The GEPNet detector maximizes detection performance, while GPICNet detector balances the performance and complexity. We provide proof of the permutation equivariance property, allowing the detectors to be trained only once, even in the systems with dynamic changes of the number of users. The simulation results show that the proposed GEPNet detector performance approaches maximum likelihood performance in various configurations and GPICNet detector doubles the multiplexing gain of BPIC detector.
Publication Type: | Journal Article |
Grant Details: | ARC/DP210103410 ARC/FL160100032 |
Source of Publication: | IEEE Journal on Selected Areas in Communications, 40(9), p. 2540-2555 |
Publisher: | Institute of Electrical and Electronics Engineers |
Place of Publication: | United States of America |
ISSN: | 1558-0008 0733-8716 |
Fields of Research (FoR) 2020: | 461301 Coding, information theory and compression 460199 Applied computing not elsewhere classified |
Socio-Economic Objective (SEO) 2020: | 220107 Wireless technologies, networks and services |
Peer Reviewed: | Yes |
HERDC Category Description: | C1 Refereed Article in a Scholarly Journal |
Appears in Collections: | Journal Article School of Science and Technology
|
Files in This Item:
1 files
Show full item record
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.