Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64586
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKosasih, Alvaen
dc.contributor.authorOnasis, Vincenten
dc.contributor.authorMiloslavskaya, Veraen
dc.contributor.authorHardjawana, Wibowoen
dc.contributor.authorAndrean, Victoren
dc.contributor.authorVucetic, Brankaen
dc.date.accessioned2025-01-25T07:02:26Z-
dc.date.available2025-01-25T07:02:26Z-
dc.date.issued2022-09-
dc.identifier.citationIEEE Journal on Selected Areas in Communications, 40(9), p. 2540-2555en
dc.identifier.issn1558-0008en
dc.identifier.issn0733-8716en
dc.identifier.urihttps://hdl.handle.net/1959.11/64586-
dc.description.abstract<p>Multi-user multiple-input multiple-output (MU-MIMO) systems can be used to meet high throughput requirements of 5G and beyond networks. A base station serves many users in an uplink MU-MIMO system, leading to a substantial multi-user interference (MUI). Designing a high-performance detector for dealing with a strong MUI is challenging. This paper analyses the performance degradation caused by the posterior distribution approximation used in the state-of-the-art message passing (MP) detectors in the presence of high MUI. We develop a graph neural network based framework to fine-tune the MP detectors’ cavity distributions and thus improve the posterior distribution approximation in the MP detectors. We then propose two novel neural network based detectors which rely on the expectation propagation (EP) and Bayesian parallel interference cancellation (BPIC), referred to as the GEPNet and GPICNet detectors, respectively. The GEPNet detector maximizes detection performance, while GPICNet detector balances the performance and complexity. We provide proof of the permutation equivariance property, allowing the detectors to be trained only once, even in the systems with dynamic changes of the number of users. The simulation results show that the proposed GEPNet detector performance approaches maximum likelihood performance in various configurations and GPICNet detector doubles the multiplexing gain of BPIC detector.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.ispartofIEEE Journal on Selected Areas in Communicationsen
dc.titleGraph Neural Network Aided MU-MIMO Detectorsen
dc.typeJournal Articleen
dc.identifier.doi10.1109/JSAC.2022.3191344en
local.contributor.firstnameAlvaen
local.contributor.firstnameVincenten
local.contributor.firstnameVeraen
local.contributor.firstnameWibowoen
local.contributor.firstnameVictoren
local.contributor.firstnameBrankaen
local.relation.isfundedbyARCen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailvmilosla@une.edu.auen
local.output.categoryC1en
local.grant.numberDP210103410en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage2540en
local.format.endpage2555en
local.peerreviewedYesen
local.identifier.volume40en
local.identifier.issue9en
local.contributor.lastnameKosasihen
local.contributor.lastnameOnasisen
local.contributor.lastnameMiloslavskayaen
local.contributor.lastnameHardjawanaen
local.contributor.lastnameAndreanen
local.contributor.lastnameVuceticen
dc.identifier.staffune-id:vmiloslaen
local.profile.orcid0000-0003-2147-2448en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64586en
local.date.onlineversion2022-07-18-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleGraph Neural Network Aided MU-MIMO Detectorsen
local.relation.fundingsourcenoteAustralian Research Council Laureate Fellowship (Grant Number: FL160100032) and University of Sydney Research Training Program Scholarshipen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP210103410en
local.relation.grantdescriptionARC/FL160100032en
local.search.authorKosasih, Alvaen
local.search.authorOnasis, Vincenten
local.search.authorMiloslavskaya, Veraen
local.search.authorHardjawana, Wibowoen
local.search.authorAndrean, Victoren
local.search.authorVucetic, Brankaen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/83224fa5-58fb-4146-80d3-337075946bd5en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/83224fa5-58fb-4146-80d3-337075946bd5en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/83224fa5-58fb-4146-80d3-337075946bd5en
local.subject.for2020461301 Coding, information theory and compressionen
local.subject.for2020460199 Applied computing not elsewhere classifieden
local.subject.seo2020220107 Wireless technologies, networks and servicesen
local.codeupdate.date2025-02-01T16:29:02.492en
local.codeupdate.epersonvmilosla@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for20204601 Applied computingen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2025-01-31en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.