Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/64372
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAddeh, Abdoljalilen
dc.contributor.authorVega, Fernandoen
dc.contributor.authorRaj Medi, Prathistithen
dc.contributor.authorWilliams, Rebecca Jen
dc.contributor.authorBruce Pike, Gen
dc.contributor.authorMacDonald, M Ethanen
dc.date.accessioned2025-01-07T23:09:01Z-
dc.date.available2025-01-07T23:09:01Z-
dc.date.issued2023-04-01-
dc.identifier.citationNeuroImage, v.269, p. 1-15en
dc.identifier.issn1095-9572en
dc.identifier.issn1053-8119en
dc.identifier.urihttps://hdl.handle.net/1959.11/64372-
dc.description.abstract<p>In many functional magnetic resonance imaging (fMRI) studies, respiratory signals are unavailable or do not have acceptable quality due to issues with subject compliance, equipment failure or signal error. In large databases, such as the Human Connectome Projects, over half of the respiratory recordings may be unusable. As a result, the direct removal of low frequency respiratory variations from the blood oxygen level-dependent (BOLD) signal time series is not possible. This study proposes a deep learning-based method for reconstruction of respiratory variation (RV) waveforms directly from BOLD fMRI data in pediatric participants (aged 5 to 21 years old), and does not require any respiratory measurement device. To do this, the Lifespan Human Connectome Project in Development (HCP-D) dataset, which includes respiratory measurements, was used to both train a convolutional neural network (CNN) and evaluate its performance. Results show that a CNN can capture informative features from the BOLD signal time course and reconstruct accurate RV time series, especially when the subject has a prominent respiratory event. This work advances the use of direct estimation of physiological parameters from fMRI, which will eventually lead to reduced complexity and decrease the burden on participants because they may not be required to wear a respiratory bellows.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofNeuroImageen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleDirect machine learning reconstruction of respiratory variation waveforms from resting state fMRI data in a pediatric populationen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.neuroimage.2023.119904en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAbdoljalilen
local.contributor.firstnameFernandoen
local.contributor.firstnamePrathistithen
local.contributor.firstnameRebecca Jen
local.contributor.firstnameGen
local.contributor.firstnameM Ethanen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailrwilli90@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber119904en
local.format.startpage1en
local.format.endpage15en
local.peerreviewedYesen
local.identifier.volume269en
local.access.fulltextYesen
local.contributor.lastnameAddehen
local.contributor.lastnameVegaen
local.contributor.lastnameRaj Medien
local.contributor.lastnameWilliamsen
local.contributor.lastnameBruce Pikeen
local.contributor.lastnameMacDonalden
dc.identifier.staffune-id:rwilli90en
local.profile.orcid0000-0002-8949-1197en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/64372en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDirect machine learning reconstruction of respiratory variation waveforms from resting state fMRI data in a pediatric populationen
local.relation.fundingsourcenoteJA – is funded in part from a graduate scholarship from the Natural Sciences and Engineering Research Council Brain Create. PRM – held a Mitacs GlobalLink Award. MEM – acknowledges support from Start-up funding at UCalgary and a Natural Sciences and Engineering Research Council Discovery Grant (RGPIN-03552) and Early Career Researcher Supplement (DGECR-00124). GBP acknowledges support from the Campus Alberta Innovates Chair program, the Canadian Institutes for Health Research (FDN-143290), and the Natural Sciences and Engineering Research Council (RGPIN-03880).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAddeh, Abdoljalilen
local.search.authorVega, Fernandoen
local.search.authorRaj Medi, Prathistithen
local.search.authorWilliams, Rebecca Jen
local.search.authorBruce Pike, Gen
local.search.authorMacDonald, M Ethanen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/60aa0b79-c615-43cd-ae19-29ad473b70aeen
local.uneassociationNoen
dc.date.presented2023-04-01-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.year.presented2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/60aa0b79-c615-43cd-ae19-29ad473b70aeen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/60aa0b79-c615-43cd-ae19-29ad473b70aeen
local.subject.for20203209 Neurosciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2025-01-08en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/DirectWilliams2023JournalArticle.pdfPublished Version4.12 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons