Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/64372
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Addeh, Abdoljalil | en |
dc.contributor.author | Vega, Fernando | en |
dc.contributor.author | Raj Medi, Prathistith | en |
dc.contributor.author | Williams, Rebecca J | en |
dc.contributor.author | Bruce Pike, G | en |
dc.contributor.author | MacDonald, M Ethan | en |
dc.date.accessioned | 2025-01-07T23:09:01Z | - |
dc.date.available | 2025-01-07T23:09:01Z | - |
dc.date.issued | 2023-04-01 | - |
dc.identifier.citation | NeuroImage, v.269, p. 1-15 | en |
dc.identifier.issn | 1095-9572 | en |
dc.identifier.issn | 1053-8119 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/64372 | - |
dc.description.abstract | <p>In many functional magnetic resonance imaging (fMRI) studies, respiratory signals are unavailable or do not have acceptable quality due to issues with subject compliance, equipment failure or signal error. In large databases, such as the Human Connectome Projects, over half of the respiratory recordings may be unusable. As a result, the direct removal of low frequency respiratory variations from the blood oxygen level-dependent (BOLD) signal time series is not possible. This study proposes a deep learning-based method for reconstruction of respiratory variation (RV) waveforms directly from BOLD fMRI data in pediatric participants (aged 5 to 21 years old), and does not require any respiratory measurement device. To do this, the Lifespan Human Connectome Project in Development (HCP-D) dataset, which includes respiratory measurements, was used to both train a convolutional neural network (CNN) and evaluate its performance. Results show that a CNN can capture informative features from the BOLD signal time course and reconstruct accurate RV time series, especially when the subject has a prominent respiratory event. This work advances the use of direct estimation of physiological parameters from fMRI, which will eventually lead to reduced complexity and decrease the burden on participants because they may not be required to wear a respiratory bellows.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | NeuroImage | en |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Direct machine learning reconstruction of respiratory variation waveforms from resting state fMRI data in a pediatric population | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.neuroimage.2023.119904 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Abdoljalil | en |
local.contributor.firstname | Fernando | en |
local.contributor.firstname | Prathistith | en |
local.contributor.firstname | Rebecca J | en |
local.contributor.firstname | G | en |
local.contributor.firstname | M Ethan | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | rwilli90@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.identifier.runningnumber | 119904 | en |
local.format.startpage | 1 | en |
local.format.endpage | 15 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 269 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Addeh | en |
local.contributor.lastname | Vega | en |
local.contributor.lastname | Raj Medi | en |
local.contributor.lastname | Williams | en |
local.contributor.lastname | Bruce Pike | en |
local.contributor.lastname | MacDonald | en |
dc.identifier.staff | une-id:rwilli90 | en |
local.profile.orcid | 0000-0002-8949-1197 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/64372 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Direct machine learning reconstruction of respiratory variation waveforms from resting state fMRI data in a pediatric population | en |
local.relation.fundingsourcenote | JA – is funded in part from a graduate scholarship from the Natural Sciences and Engineering Research Council Brain Create. PRM – held a Mitacs GlobalLink Award. MEM – acknowledges support from Start-up funding at UCalgary and a Natural Sciences and Engineering Research Council Discovery Grant (RGPIN-03552) and Early Career Researcher Supplement (DGECR-00124). GBP acknowledges support from the Campus Alberta Innovates Chair program, the Canadian Institutes for Health Research (FDN-143290), and the Natural Sciences and Engineering Research Council (RGPIN-03880). | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Addeh, Abdoljalil | en |
local.search.author | Vega, Fernando | en |
local.search.author | Raj Medi, Prathistith | en |
local.search.author | Williams, Rebecca J | en |
local.search.author | Bruce Pike, G | en |
local.search.author | MacDonald, M Ethan | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/60aa0b79-c615-43cd-ae19-29ad473b70ae | en |
local.uneassociation | No | en |
dc.date.presented | 2023-04-01 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.year.presented | 2023 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/60aa0b79-c615-43cd-ae19-29ad473b70ae | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/60aa0b79-c615-43cd-ae19-29ad473b70ae | en |
local.subject.for2020 | 3209 Neurosciences | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2025-01-08 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/DirectWilliams2023JournalArticle.pdf | Published Version | 4.12 MB | Adobe PDF Download Adobe | View/Open |
This item is licensed under a Creative Commons License