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a b s t r a c t 

In many functional magnetic resonance imaging (fMRI) studies, respiratory signals are unavailable or do not have 

acceptable quality due to issues with subject compliance, equipment failure or signal error. In large databases, 

such as the Human Connectome Projects, over half of the respiratory recordings may be unusable. As a result, 

the direct removal of low frequency respiratory variations from the blood oxygen level-dependent (BOLD) signal 

time series is not possible. This study proposes a deep learning-based method for reconstruction of respiratory 

variation (RV) waveforms directly from BOLD fMRI data in pediatric participants (aged 5 to 21 years old), and 

does not require any respiratory measurement device. To do this, the Lifespan Human Connectome Project in 

Development (HCP-D) dataset, which includes respiratory measurements, was used to both train a convolutional 

neural network (CNN) and evaluate its performance. Results show that a CNN can capture informative features 

from the BOLD signal time course and reconstruct accurate RV timeseries, especially when the subject has a 

prominent respiratory event. This work advances the use of direct estimation of physiological parameters from 

fMRI, which will eventually lead to reduced complexity and decrease the burden on participants because they 

may not be required to wear a respiratory bellows. 
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. Introduction 

In recent years, fMRI has shown promise for studying pediatric co-

orts to understand brain function both in typically developing children

nd those with neurodevelopmental disorders. However, the potential

f fMRI is limited by difficulties associated with its use in children. It is

ommon for children to be anxious, claustrophobic, and restless during

n fMRI scan, limiting compliance. Furthermore, children may have dif-

culty following instructions and comprehending requirements during

maging ( Rassler et al., 2022 ; Shechner et al., 2013 ). In adults, a brief

r limited fMRI preparation session may be sufficient, but fMRI prepa-

ation for children often needs to be more extensive and individualised.

Hemodynamics in the brain are complex, particularly with disease

 MacDonald et al., 2016 ). Slow variations in breathing rate and depth

uring fMRI scanning can alter cerebral blood flow and consequently

he blood oxygen level-dependent (BOLD) signal ( MacDonald et al.,

018 , 2020 ; Williams et al., 2021 ). Correcting for the effects of

ow frequency respiratory fluctuations has been shown to improve
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he detection of task-activated voxels and reduce false − positives and

alse − negatives in resting-state functional connectivity ( Birn et al.,

006 ; Chang and Glover, 2009 ; Chu et al., 2018 ; Golestani and

hen, 2020 ; Golestani et al., 2016 ). In general, attempts to gauge respi-

atory contributions to fMRI signals require a respiratory measurement

ecorded during scanning. In many studies, particularly in pediatric pop-

lations, physiological signals (respiratory and cardiac) are not recorded

r have poor quality, due to issues with participant compliance ( e.g. ,

oving or disconnecting the measuring equipment). 

Over the past decades several methods such as a notch filter

 Biswal et al., 1996 ), k-space domain ( Frank et al., 2001 ; Glover and

ai, 1998 ; Hu et al., 1995 ; Wowk et al., 1997 ), image domain

 Chuang and Chen, 2001 ; Glover et al., 2000 ), and convolution

odel-based approaches ( Birn et al., 2006 ; Chang and Glover, 2009 ;

olestani et al., 2015 ; Wise et al., 2004 ) have been developed for re-

ucing the effect of physiological noise in fMRI time series. In notch

lter methods, the fundamental frequency of the respiratory signal is

dentified from external recordings and used to filter those components
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f the BOLD signal. Glover et al. proposed an image-based respiratory

ffect cancellation method named ‘retrospective image correction tech-

ique’ or RETROICOR ( Glover et al., 2000 ). RETROICOR models phys-

ological noise using a Fourier expansion based on the phases of the

xternally recorded respiratory or cardiac signals. Compared to a notch

lter that works only on a prescribed range of frequencies sufficiently

ampled in the time series, RETROICOR can account for fluctuations that

re of a higher frequency. However, RETROICOR does not remove slow

 ∼0.03 Hz or lower) signal changes induced by breath-to-breath varia-

ions in the depth and rate of breathing. Consequently, more sophisti-

ated model-based approaches have been proposed to account for the

ffects of low-frequency respiration variations extracted from external

espiratory measurements ( Birn et al., 2008 ; Chang and Glover, 2009 ;

olestani et al., 2015 ; Power et al., 2020 ). While these techniques per-

orm very well, they require the collection of external signals that can

e cumbersome and prone to error in the MR environment, particularly

n pediatric populations. 

Neural network algorithms utilize large volumes of data and discover

pecific trends and patterns that may not be apparent to human ex-

erts. In a study by Salas and colleagues, a convolutional neural network

CNN) and single-unit dense layer linear network were used to recon-

truct respiratory signal variation from fMRI data ( Salas et al., 2021 ). In

wo studies conducted by Bayrak et al ., a U-Net was utilized for RV re-

onstruction ( Bayrak et al., 2020 ), and a deep long-short term memory

etwork was used for joint estimation of RV and heart rate ( Bayrak et al.,

021 ). The developed methods were tested on an adult population and

howed a great deal of success. There were some specific limitations

oted about their work, in particular: BOLD signals were band-pass fil-

ered in a range of 0.01–0.15 Hz and temporally downsampled by a

actor of 2, the study was limited only to the adult population, and

moothing was done on the respiratory variation signals before trying

o do the estimation. The typical respiratory rate in adults is within the

ange of 10–20 breaths per min (0.16–0.33 Hz), but there are large num-

er of periods in the Human Connectome Project Young Adults (HCP-

A) (dataset used by Salas and colleagues) where participants had slow

reathing, in range (0.07–0.16 Hz). Temporal smoothing makes it dif-

cult to pinpoint the precise moment of activity and limited the per-

ormance of the CNN. Moreover, due to edge-effects, these models are

nable to reconstruct the entire RV signal and some information is dis-

arded at the beginning and end of the scan. Finally, extensions to their

ork in pediatric populations are particularly important, as children are

nown to have faster and more variable respiration, more motion and

ower compliance with respiratory measurement equipment. 

This study proposes a novel CNN architecture to reconstruct the full

espiratory signal variation waveforms from fMRI data alone in a pe-

iatric population, with minimum preprocessing and smoothing both

n the BOLD signals and respiratory belt traces. In our work, we show

hat many of the respiratory signals available in the Human Connec-

ome Project – Developmental (HCP-D) database are unsatisfactory for

raining because of quality, further highlighting the need for such an

lgorithm. We trained the model using a 10-fold cross validation proce-

ure with performance metrics. Correlation as a performance metric is

hown to have limitations and so several performance metrics as used.

inally, we do an ablation study (i.e., test performance against model
Table 1 

Resting-state fMRI imaging protocol in HCP-D. The four 6:41minute resting-state

over two days ( Harms et al., 2018 ). 

Session Modality Scan Resolution (mm

1 

Spin echo field maps AP & PA 2 

BOLD Resting state Run 1 AP 2 

BOLD Resting state Run 2 PA 2 

2 

Spin echo field maps AP & PA 2 

BOLD Resting state Run 1 AP 2 

BOLD Resting state Run 2 PA 2 

2 
arameters) to show the model performance as a function of the CNN

ernel size and position. The advancements on the previous works by

alas et al. (2021) and Bayrak et al. (2021 , 2020 ), include the more so-

histicated CNN model, less pre-processing of the fMRI data, application

o pediatric population where the resting state scan is half the length,

nd using more extensive evaluation criterion. 

. Materials and methods 

.1. Dataset 

The HCP-D dataset is a publicly available and has been compre-

ensively described ( Harms et al., 2018 ; Somerville et al., 2018 ). We

ive a brief overview here. The HCP-D aims to enroll 1300 healthy chil-

ren, adolescents, and young adults ranging in age range between 5 and

1 years from diverse geographical, ethnic, and socioeconomic back-

rounds. Brain imaging is performed on a 3T Siemens Prisma platform

nd includes structural, functional (resting state and task-based), diffu-

ion, and perfusion imaging, and physiological signal monitoring. Data

s acquired during two separate MRI sessions. 

In this paper, we focus on the resting state fMRI scans and the associ-

ted respiration measurements. For the resting state fMRI scans, subjects

ere scanned at rest 4 times, each time for 6.41 min (two scans per day

n two days). Sequences were counterbalanced with anterior to poste-

ior (AP)/posterior to anterior (PA) phase encoding, with TR = 800 ms,

E = 37 ms, flip angle = 52°, with a 32-channel head coil, multi-band fac-

or 8, and 2 mm isotropic voxels with full brain coverage. During HCP-D

esting-state fMRI scanning, participants are instructed to remain still,

tay awake, and blink normally while looking at a fixation crosshair.

able 1 shows the details of HCP-D resting-state fMRI data. Compared

o HCP-YA project where the scanning duration of resting-state fMRI

as 15 min, in HCP-D project it is shortened to ∼7 min to improve tol-

rability for younger participants. 

The HCP-D dataset has the unique advantage of containing four pro-

onged resting state scans that allows us to examine the changes in res-

iratory measurements occurring over the course of a scanning session.

espiratory data was acquired via the Siemens Physiology Monitoring

nit (PMU). The respiratory recording is obtained via a pneumatic hose

onnected to a respiratory cushion placed under an elastic belt strapped

round the subject’s abdomen, and output is in arbitrary units with a

00 Hz sampling frequency. In this study, fMRI data from 614 subjects

rom HCD0001305 to HCD2996590 (2451 scans in total) were investi-

ated, and 306 scans belonging to 215 subjects were selected based on

he quality of their respiratory signals. 

.2. Quality control of respiratory signals 

All respiratory belt traces were first visually inspected and processed

ith a custom program to identify partial or complete corruption. There

re several potential sources of variation arising from the participant in

he respiration recordings, such as: talking, breath holding, hyperventi-

ation and hypoventilation. Fig. 1 a shows an example of the impact of

alking on normal respiratory signal. In addition to breathing variations,

ther technical problems such as improper attachment of the belt to the
 fMRI runs (26-minute total) are acquired in the two separate fMRI sessions 

) fMRI volumes Duration (min:sec) Participant action 

0.18 NA 

488 6:41 Fixation 

488 6:41 Fixation 

0.18 NA 

488 6:41 Fixation 

488 6:41 Fixation 
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Fig. 1. Example of respiratory signals from different groups. A, b, c) Signal with removable spikes (HCD0425335, session 1, run 2; HCD0271031, session 2, run 2; 

HCD2000111, session 2, run 1). Light grey graphs show the original respiratory signal with removable spikes, d) Signal with unremovable spikes marked by color 

dashes (HCD2335344, session 2, run 2), e) partially recorded signal (HCD0968878, session 2, run 2). In this example, spikes are removed from recorded parts of the 

signal to show the impact of spike elimination clearly, f) Not recorded (signal with zero amplitude, HCD0110411, session 2, run 1) and signal varies only in a small 

range having square pulse-shape pattern (HCD0694564, session 1, run 2), g) very distorted signals with high frequency noise (HCD0146937, session 1, run 1), h) 

connections changed at a certain point (HCD1796577, session 1, run 1). 
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ransducer or the transducer to the subject, and improper fitting the belt

round subject’s abdomen, can corrupt the data completely or partially.

oving around ( i.e. , squirming) or pulling on the respiration belt are

ore common in pediatric populations and represents another source

f error. Depending on the severity of corruption, outlier replacement

an be used to correct spurious spike artifacts. Three examples of spuri-

us spike artifacts that can be eliminated using outlier replacement are

hown by Fig. 1a –c. In Fig. 1 , light grey graph shows the original respi-

atory signal including spikes and the black graph shows the signal after

pike correction using the MATLAB ‘filloutliers (signal, ‘previous’, ‘mov-

edian’, window_size)’ command. Local outliers are defined as elements

ore than three scaled median absolute deviations in a moving window.

he breathing rate in HCP-D dataset is 0.315 ± 056 Hz, which means

reaths have ∼3 s duration as expected in children. As outliers occur

epeatedly and at random places in a breath, it is not reasonable to use

 large window covering a whole breath duration (considering 400 Hz

ampling rate, a window size 1200 is required to cover a breath). Large

ifferences between minimum and maximum values of belt traces at the

nd of inhalation and exhalation can put some obvious outliers inside

he accepted range (smaller than three local standard deviations away

rom the local median within a window) and the algorithm will miss

hose outliers. Therefore, the largest length of moving window set to 1 s

or 400 points as the sampling rate is 400 Hz). These investigations re-

ealed that for each signal a certain window length will lead to the best

utlier replacement (minimum number of spikes), and by decreasing or

ncreasing the window length the outlier replacement will fail again.

ore details are provided in the Supplementary Material. The length of

he moving window is selected for each signal separately, with the goal

f obtaining a minimum number of spikes. Deep breathes in Fig. 1 a, se-

ial tapering of respiratory depth spanning 45 s at a time or bursts in
3 
ig. 1b , and significant change in breathing depth and rate in Fig. 1c ,

nd any change in breathing pattern has distinct influences on BOLD

ignals and signal covariance. If a RV timeseries is available, the effect

f the breathing pattern can be accounted for in the fMRI data analysis

o reduce this confound. 

All respiratory signals were evaluated and classified as acceptable or

nto one of 7 classes of corruption: Class 1: Signals with removable spu-

ious spike artifacts ( Fig. 1a to c). All HCP-D respiratory time courses

ave some amount of spurious spike artifacts. For signals belonging to

lass 1, the outlier replacement algorithm was able to remove all spu-

ious spike artifacts completely. 352 out of all 2451 respiratory signals

re class 1 (14.36%). Class 2: Signals with unremovable spurious spike

rtifacts ( Fig. 1d ). The analyses showed that all the signals that have

nremovable spikes (Class 2) have more than 100 spikes after outlier

eplacement. Spikes are a significant element in a respiratory signal be-

ause they impact the standard deviation of the signal (or RV) substan-

ially. Even one spike in the respiratory signal can create a bump in

V waveform and mislead the model training. 1849 out of all 2451

ignals are class 2 (75.43%). Class 3: Partially recorded signal ( e.g. ,

ig. 1e ) occurred 130 out of 2451 times (5.3%). One possible reason

or this type of error can be subject movement and displacement of the

elt or disconnection of the transducer. Class 4: Signals with very low

mplitude ( Fig. 1f ) were found in 65 out of 2451 scans (2.65%). Nor-

ally, recorded respiratory signal in the HCP-D project vary in range

68 ± 590 and 3306 ± 534 (arbitrary units). Signals in Class 4 have a

ynamic range smaller than 100 resulting in a square pulse-shape pat-

ern. A square pulse-shape pattern is generally not observed in signals

ith dynamic range higher than 100. More details on respiratory signals

ssigned as Class 4 are provided in the Supplementary Material. Class 5:

ot recorded cases ( Fig. 1f ) constitute 15 out of 2451 signals (0.61%).
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lass 6: Very distorted signals with high frequency noise ( Fig. 1g ) – con-

titute 24 out of all 2451 (0.97%). More details on respiratory signals

ssigned as Class 6 are provided in the Supplementary file. Class 7: Con-

ections changed at a certain point ( Fig. 1h ). 16 out of 2451 signals are

lassified as class 7 (0.65%). Many of the recorded respiratory signals

n the HCP-D dataset don’t have acceptable quality and cannot be used

or further analysis, and particularly not for training a machine learning

odel as we do not want the model to learn these erroneous signals. As

espiratory signals in Class 1 have good quality, the respiratory signals

n this class and their associated fMRI images are used for training and

esting the proposed method. 

To investigate the relationship between respiratory signal quality

nd age of the subjects, we divided the respiratory traces into two groups

ncluding 306 usable scans (mean age: 15.1 ± 3.5 years) and 2143 not-

sable scans (age: 14.5 ± 3.8 years) groups. The difference between

he two distributions was statistically significant ( p < 0.05). In addi-

ion to quality of respiratory traces, there is a statistically significant

egative correlation between the age of subjects and their head mo-

ion ( r = − 0.269, p < 0.001). These findings illustrate the challenges of

ecording respiratory signals during fMRI studies on pediatric popula-

ions, where younger participants provide the greatest challenges. 

.3. Data preprocessing 

fMRI images were corrected for geometric distortions caused by B0

nhomogeneity using the susceptibility induced distortion correction

ool in FSL (TOPUP) ( Andersson et al., 2003 ; Smith et al., 2004 ); cor-

ected for head motion by registration to the single band reference image

sing the motion correction tool in FSL (MCFLIRT) ( Jenkinson et al.,

002 ); and registered to the T 1 -weighted structural image using Ad-

anced Normalization Tools (ANTs) ( Avants et al., 2011 ). The single

and reference image was used as the target image for head motion

orrection and as the representative fMRI image used to align the fMRI

ata to the structural data. All the transforms were then concatenated,

ogether with the structural-to-MNI nonlinear warp field registration,

nd this single resulting warp (per timepoint) was applied to the origi-

al timeseries to achieve a single resampling into 2 mm MNI space. 

.4. Proposed method 

This study proposes a computational framework for reconstructing

ull respiratory signal variation waveform from fMRI time series data

lone. Due to CNN’s unique ability of capturing position and translation

nvariant patterns, in the proposed method three CNNs are applied in the

emporal dimension of the BOLD time series for RV reconstruction. To

ecrease computational complexity, the average BOLD signal time series

rom 90 functional regions of interest (ROI) ( Shirer et al., 2012 ) were

sed as the main inputs to the designed model. These 90 functional ROIs

over most of the cortical and subcortical gray matter. Fig. 2 shows the

odel input and output. The RV is defined as the standard deviation of

he respiratory waveform within a six-second sliding window centered

t each time of point ( Chang et al., 2009 ). The output of the model can

e defined as any point of the moving window as shown in Fig. 2 . In

his hybrid method, three approaches are implemented: first point of

he window (Method 1 in Fig. 2 ), middle point of the window (Method

 in Fig. 2 ), and end point of the window (Method 3 in Fig. 2 ). In Method

, the CNN can use both past and future information, but in Method 1

nd 3 it can only use the future and past information, respectively. 

Current respiratory pattern impacts the upcoming BOLD signals. To

tudy the influence of breathing pattern on upcoming BOLD signals, the

rayscale of BOLD signals is shown by Fig. 3 . In this figure, x-axis shows

he TRs and y-axis is all voxels in 90 functional ROIs. In this figure, the

mpact of isolated deep breaths and subject’s head motion on BOLD sig-

al is illustrated as an example. In HCP-D dataset, these isolated deep

reaths are often followed by a pause in breathing with varying length.
4 
n each of these cases, there are a vertical white band that indicates

rief signal increases, and a vertical black band that reflects prominent

OLD signal decreases. This phenomenon is consistent with a reduc-

ion in cerebral blood flow following a transitory increase in breathing

epth. In addition, the respiratory response function used for modeling

 single deep breaths has the same shape ( Birn et al., 2008 ). Accord-

ng to this figure, the variations in breathing pattern induce variation in

he BOLD signal and the CNN in Method 1 and Method 2 can use this

nformation to reconstruct the RV timeseries. Current breathing depth

nd rate are dependent upon previous breaths ( Van den Aardweg and

aremaker, 2002 ). Method 3 can use this information to reconstruct the

urrent RV timepoint. 

For Method 2 with windows size 65, as an example, BOLD signals

entered at each RV point covering 32 TRs before and after were used

s the input. Therefore, each input had a size of [65 × 90], where 65

s the window size and 90 is the number of regions of interest. This

road range for window size (32 TRs before respiration variation point

o 32 TRs after respiration) is chosen to encompass both immediate and

onger-range respiratory changes. A larger window size provides more

nformation to the model. In the proposed methods, each methods is

nable to estimate the RV at the beginning and/or end of the scan, thus

 hybrid method to employed to estimate the complete RV: Method 1

stimates the RV at the beginning, Method 2 at the middle, and Method 3

t the end of the scan. Implementing three CNNs with different reference

o the BOLD signals enables the RV signal for the whole scan and don’t

iss the information at the beginning and end of the scan due to effect

f sliding window. 

No formal rules govern how CNN parameters are set, but the val-

es can be determined by the user based on the problem at hand

nd their experience. In the five-layer CNN model developed by

alas et al. (2021) the number of filters in different layers are 20, 40, 80,

60, and 320, respectively. In Salas’s model, rectified linear unit (ReLU)

s used in the hidden layers. This implementation is compared against

he proposed model. In the current work, we implement a deep learn-

ng CNN with the following architecture: one input layer, six successive

ne-dimensional (1D) separable convolutional layers, and one output

ayer. The first input layer represents the input data, which is a tensor

ith [window size × 90] dimension. The 1D separable convolution lay-

rs perform a separate depth-wise convolution on each channel. For the

rst 1D separable convolution layer in our model, each averaged BOLD

ignal of a region of interest represents a channel. After applying depth-

ise convolution on all channels (90 channels in the first convolution

ayer), it combines them using pointwise convolution. The number of

hannels in the first layer can be changed by using other brain atlases.

he first convolutional layer has 24 filters of size 3, and the number of

lters in the following layers are 32, 64, 128, 160, and 320 respectively

ith the same size. Activation functions are a critical part of the design

f a CNN model. The ReLU is the most common activation function used

or hidden layers. A potential disadvantage of ReLU is that it has zero

radient whenever the unit is not active, and may cause units that do

ot activate initially to never activate as the gradient-based optimization

ill not adjust their weights. Also, it may slow down the training pro-

ess due to the constant zero gradients ( Gu et al., 2018 ). To avoid these

roblems, we used a leaky ReLU that alleviates the ‘dead unit’ problem

ith a small slope for negative values. The leaky ReLU compresses the

egative part rather than mapping it to constant zero, which allows for a

mall, non-zero gradient when the unit is not active ( Maas et al., 2013 ).

o reduce the size of the input representation by half, a max pooling

lter of size 2 is applied to the feature maps after each convolutional

ayer. Specifically, the pooling reduces the resolution of the extracted

eatures layer-by-layer and simultaneously enhances their robustness.

n addition, pooling layers save computation costs and reduce the prob-

em of overfitting. The final layer of the designed CNN model has one

euron with a linear activation function. Fig. 4 shows the architecture

f the proposed CNN model. 
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Fig. 2. Inputs and outputs in the proposed method. A respiratory signal is a [152,960 × 1] vector, and RV is a [number of fMRI volumes – 6 second sliding window] 

vector. Method 1 uses the information in the future BOLD signals, Method 2 takes advantage of both sides, and Method 3 use only the past information. For windows 

size 65 as an example, Method 1 will estimate [RV] 1:32 ×1 , Method 2 will estimate [RV] 33:446 ×1 , and Method 3 will estimate [RV] 447:478 ×1 . Window size determines 

the length of the input data and number of averaged BOLD signals in each ROI determines the number of channels. 

Fig. 3. Illustration of respiratory events impact on BOLD signals. In gray scale heat maps of BOLD signals, white vertical bands show BOLD signal increase and black 

vertical bands show BOLD signal decrease. Impact of deep breaths on BOLD signal. Vertical black bands after each deep breath reflect the BOLD signal decrease. 

Prominent respiratory events such as an isolated deep breath impact the RV waveform significantly. In these examples, a bump in RV waveform is created because 

of each deep breath. On the other hand, RV has a flat shape when subject breathes at almost constant rate and depth, like the time periods shown by yellow double 

arrows in graph ‘a’. For RV reconstruction, CNN can take advantage of substantial fluctuations in BOLD signals. 

5 
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Fig. 4. Architecture of the proposed CNN model. The proposed model consists of six successive 1D separable convolutional layers and one output layer. In the 

proposed architecture, each convolutional layer is followed by a pooling layer. The first convolutional layer has 24 filters of size 3, and the number of filters in the 

following layers are 32, 64, 128, 160, and 320 respectively with the same size (tan color). The size of filters in all pooling layers is 2 (red color). This is followed by 

a flat densely connected layer and then the output layer (dark purple color). 
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.5. Evaluation methods 

Selection of the proper loss function is critical for training an accu-

ate and robust deep learning model. Certain loss functions will have

ertain properties and help the model learn in a specific way. Some

ay put more weight on outliers, others on the majority. The mean ab-

olute error (MAE) is only slightly different in definition from the mean

quare error (MSE), but provides different results when used in training.

ince we are taking the absolute value in the MAE, all the error will be

eighted on the same linear scale. Using MAE might result in the model

eing accurate most of the time but prone to rare, intermittent poor pre-

ictions. On the other hand, since the MSE squares the errors, it can help

he training algorithm to penalize outlier predictions. As pediatric pop-

lation are characterized by higher respiration rates and more abnormal

reathing patterns, MSE is a more appropriate choice for a loss function.

herefore, we used MSE as the loss function in these experiments. 

.6. Training and evaluation 

To train the CNN model and evaluate its performance, respiratory

ignals in Class 1 and their associated fMRI data are used. Due to lim-

ted training data, a ten-fold cross-validation strategy was employed in

his work to evaluate the robustness of the proposed model where an

ndependent model is built for each fold there is no model aggregation.

andom sampling was performed on the input-output dataset by divid-

ng the data into ten equal portions. For each fold, a model is fit using all

amples except the held-out subset (called the first fold). The held-out

amples are predicted by this model and used to estimate performance

easures. The first subset is returned to the training set and procedure

epeats with the second subset held out, and so on. After each run, the

rained model is discarded, and a new model trained with the new sub-

ets ( Bishop, 2006 ). At the end, there were 10 independent models. The

erformance scores from the all 10 runs on held-out samples are then av-

raged and reported as the “Average ± Standard Error (SE)’’ ( Kuhn and

ohnson, 2013 ). As the held-out or testing subset are kept untouched

n each run, there is no chance for data leakage or survivorship during

he model training. In each run, the model was trained end-to-end for

00 epochs using a backpropagation algorithm with a batch size of 64.

o monitor the training process and prevent the model from overfitting,

0% of the k-fold training data was used to validate the performance at

he end of each training epoch. The k value must be chosen carefully,

 = 10 was chosen as the acceptable trade-off between the higher num-

er of folds and the computational load ( Kuhn and Johnson, 2013 ). To

llustrate the performance of the proposed method on unseen data, vi-

lin plots are used. In the Results section, each violin plot represents

esults over the unseen test data in 10-fold cross-validation. 

The learning rate ( 𝜂) of the model was set to 0.001 and was used in

onjunction with an Adam optimizer ( Kingma and Ba, 2014 ) to accel-

rate the learning process. The performance of each fold was evaluated

ased on MAE, MSE, coefficient of determination of the prediction (R 

2 ),
6 
nd dynamic time warping (DTW). The best possible score for R 

2 is 1.0.

 constant model that always predicts the expected value of y, disre-

arding the input features, would get an R 

2 score of 0.0. In this study,

 standard DTW was used with Euclidean distance in the cost matrix

s implemented to compare the similarity of reconstructed RV with ac-

ual RV. Smaller values of DTW distance indicate a better performance.

or interest, the average frequency spectrum of estimated and true RV

ignals was compared. 

The deep network in this work was developed and evaluated in

ython language using Keras with TensorFlow as the backend. Respi-

atory signal processing and RV extraction was done using MATLAB

ersion R2021a. Several experiments have been done to evaluate the

erformance of proposed RV reconstruction method. The computational

xperiments for this section were done on the Advanced Research Com-

uting (ARC) cluster at the University of Calgary, using two processors

ith 200 GB RAM to train the network. The code of the proposed method

s available on GitHub ( https://github.com/jaliladde ). 

.7. Ablation studies 

Next, ablations studies were performed to determine the effect of the

indow size and whether the end point or middle point of the window

eads to more accurate reconstruction. The window size determines the

epth of data that can be changed according to the design priorities such

s reconstruction accuracy or maximum length of the reconstructed RV

imeseries. In this experiment, the size of moving window changed to

alues of 9, 17, 33, 65, 129 and 257 to study its impact on CNN’s perfor-

ance. In the CNN models that use smaller window sizes including 33,

7 and 9, the number of pooling layers is decreased to avoid negative

imension size. As an example, the pooling layer after the first convolu-

ion layer is removed for a CNN model window size of 33. As changes in

reathing pattern have an impact both on past and future BOLD signals,

he performance of CNN model for all output definitions, including the

oving window’s starting point, middle point of moving window and

he end point of moving window, is evaluated. Friedman Tests were con-

ucted on different metrics obtained by different settings (for example

ifferent window sizes) to examine the effect that parameter had on RV

stimation. The hybrid method is then demonstrated, and the method is

hown in data without reliably respiration measurements. 

. Results 

.1. Performance of the proposed method 

Fig. 5 shows the performance of the proposed method using win-

ow size 65 and considering the middle point of the window as the

etwork’s output (Method 2) on five samples from the test subset. The

rained network can reconstruct the RV timeseries with a high accuracy,

specially when there are big changes in RV value. In accordance with

ig. 3 , big changes in RV can happen when the subject has a deep breath

https://github.com/jaliladde
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Fig. 5. Performance of the Method 2 with window size 65 on unseen scans. In the HCP-D project, the RV signal length is 478 and using window size 65 in Method 2 

leads to loss of 32 points at the beginning and end of the RV timeseries. RV timeseries with higher values and fluctuations are reconstructed with higher correlation 

performance, and RV timeseries having almost constant values have lower correlation performance but acceptable quality. 

Fig. 6. Performance of the proposed method in reconstruction of RV during deep breaths. There is a high prevalence of deep breaths in fMRI scans. It is essential to 

capture these events because they cause prolonged and prominent changes in BOLD signals. The proposed method can reconstruct the RV signal during deep breaths 

with high accuracy. 
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Fig. 7. Relation between RV timeseries changes and CNN’s performance. X-axis 

shows the std value of measured RV timeseries and y-axis shows the correlation 

value between measured and reconstructed RV. RV timeseries with higher std 

are reconstructed with higher accuracy. 

i  

F  
r changes their breathing pattern. On the other hand, when the subject

reaths normally at a constant rate and depth (like the time between

wo green arrows in Fig. 3a ), it is challenging for the CNN to find useful

nformation to reconstruct the RV. 

From 352 analyzed respiratory signal in Class 1, 1163 deep breaths

in average, 3.3 deep breath during each fMRI scan) detected. The

erformance of developed model in reconstruction of RV during deep

reaths is evaluated. The developed model can detect the deep breaths

rom BOLD signal fluctuation in 1131 cases (96.83% precision) and

econstruct the RV with high accuracy. An RV reconstruction of deep

reaths is considered a successful case if the real and reconstructed RV

ad correlation higher than 0.9. Several successful RV reconstructions

uring deep breaths are shown in Fig. 6 . In many subjects there are

trong interrelationships between respiration and motion as shown in

ig. 3 . But there are some cases that subject has a motion without any

espiratory events (shown by a blue arrow in Fig. 3b ). In addition, there

re some anomalies in the heat maps without obvious causes that could

e hardware related ( Power, 2017 ). For CNN training, BOLD signals may

e misleading when influenced by head motion or hardware artifacts.

here were 37 false positive cases that the CNN detected them as deep

reath (a bump in the RV waveform). 

As shown by Fig. 5 , RV timeseries with higher values and fluctua-

ions are reconstructed with higher accuracy, and RV timeseries hav-
 d  

7 
ng almost constant values are difficult for the CNN to reconstruct. In

ig. 7 , the relation between RV timeseries changes in term of standard

eviation (std) and the correlation between actual and reconstructed
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Fig. 8. Performance of the proposed method shown as violin plots of MAE, MSE, correlation, and DTW. Each violin represents results over the unseen test data in 

10-fold cross-validation. In these graphs, the white circle and triangle arrows inside the grey box show median and notches, and black horizontal line shows the 

mean value. Differences among metrics implies that using one loss function for training a machine learning model is not sufficient. 

Table 2 

Comparing the performance of the proposed method (Method 2) with Salas’s model for all scans 

in the unseen test data in 10-fold cross-validation. 

Method Statistical measure MAE MSE R 2 DTW 

Proposed 

method 

Mean ± SE 0.31 ± 0.0041 0.13 ± 0.0051 0.558 ± 0.0098 62.75 ± 0.91 

Median ± SE 0.30 ± 0.0036 0.12 ± 0.0029 0.589 ± 0.012 61.25 ± 0.61 

Salas’s 

model 

Mean ± SE 0.34 ± 0.0064 0.15 ± 0.0071 0.523 ± 0.0085 64.37 ± 1.32 

Median ± SE 0.32 ± 0.0063 0.13 ± 0.0062 0.532 ± 0.0135 61.93 ± 1.08 
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V timeseries is shown. It is observed that the CNN can reconstruct the

V timeseries including high variation (higher standard deviation) com-

ared to RV timeseries with low variations. 

Fig. 8 shows the performance of the CNN with a window size of 65

nd considering the middle point of the window as the CNN’s output

Method 2) in terms of MAE, MSE, correlation, and DTW. The perfor-

ance of the proposed model is compared with the model developed by

alas et al. (2021) in Table 2 . More details are available in the supple-

ental materials. To summarize, the proposed method outperforms the

alas’s model with a significant difference between their performance

 p -value < 0.01). 

Younger individuals breathe at faster rates than adults (20–30 bpm

n children between 1 and 5 years-old, 12–20 bpm in children between

 and 11 years-old versus 10–20 bpm in adults). In Fig. 9 , the average

requency spectrum of measured RV and reconstructed RV are shown,

hich shows similarity of the frequency spectrums. We compared the

requency of all RV timeseries and observed that correlation and DTW

ead to higher frequency-based similarity. 

.2. Ablation study 

Ablations studies are conducted in many machine learning papers to

etermine how the model performs as a function of one or more model

yper-parameters. Window size controls the amount of information pro-

ided to the model. Fig. 10 shows a sample reconstructed RV timeseries

sing the proposed method with different window sizes and consider-

ng the middle point of the window as the CNN’s output (Method 2).

he correlation value between the true and reconstructed RV timeseries

or window size 9 through 257 are 0.64, 0.66, 0.81, 0.88, 0.93, and

.96 respectively. Improvement in the correlation value with increas-
8 
ng window size illustrates that changes in breathing pattern have short

nd long-term effects on BOLD signal, and the CNN can benefit from

hese long-term effects to improve performance. Larger window sizes

y providing more information about baseline breathing rate and depth

nable the model to have a better estimate of variation. An important

imitation of larger window size is that they result in more timepoints

iscarded at the beginning and end of the scan due to edge-effects. This

actor may limit the minimum duration of scans that can be reasonably

econstructed with the proposed approach, but for longer scans a larger

indow might be acceptable. For fMRI studies with short scan times, the

roposed method using a window size of 17 or 33 will be a reasonable

hoice with a fair performance. 

Fig. 11 shows the performance between actual and reconstructed

V timeseries for the different window sizes. Again, a trend of higher

erformance is seen with increasing window size. Use of a larger re-

onstruction time-window could potentially enable a broader range of

V frequencies to be captured by the model, though at the cost of in-

reased complexity. The statistical analyses using Friedman test showed

hat there is a statistically significant difference between window 17 and

, 33 and 17, 65 and 33, 129 and 65 ( p -value < 0.001), but there wasn’t

 statistically significant difference between window 257 and 129 for

ll metrics. Therefore, window size 129 seems reasonable choice for RV

econstruction with highest accuracy. 

Fig. 12 shows the impact of output point location, whether we are

rying to estimate the point at the beginning, middle or end of the win-

ow, on network’s performance. The obtained results show that using

oth side information, before and after the current breath, leads to a

etter performance (Method 2). There isn’t a significant difference be-

ween different methods ( p -value < 0.001). In general, the performance

f all three methods is acceptable. 
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Fig. 9. Average of frequency spectrum of measured RV and reconstructed RV using CNN with window size 65 and considering the middle point as the output 

(Method 2). As variation in RV timeseries indicate the change in breathing depth and rate, similar frequency spectrum implies the great performance of the proposed 

method. There is a noticeable mismatch at higher frequencies that shows that the proposed method cannot reconstruct the high-frequency content of RV timeseries. 

These results indicate the necessity for defining a proper loss function including frequency features. 

Fig. 10. Impact of window size on the reconstruction accuracy and length of reconstructed signal. By increasing the window size, reconstruction accuracy is improved 

at the cost of more missing data. 
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The performance of the hybrid method is shown in Fig. 13 . For this

xperiment a window size of 65 is used, thus 32 timepoints at the be-

inning is estimated by Method 1, and 32 timepoints at the end are

stimated by Method 3. The remaining 414 timepoints at the middle

f the signal are estimated by Method 2. Prominent respiratory events

uch as deep breaths occur at any point of a scan in HCP-D data, but

hey are more common at the middle and end of the scan. Therefore,

he performance of Method 1 in estimation of first 32 timepoints is a

ittle lower compared to its performance on full scan. In addition, there

s a small shift in RV value when we switch from Method 1 to Method

, and form Method 2 to Method 3 as shown by pink arrows in Fig. 13 .

An interesting application of the proposed method is reconstruction

f the RV time course for scans without respiratory data or scans with

oor quality respiratory data. The performance of the developed method

s tested on two scans belonging to Class 5 and 6. In this experiment, the

ull RV signal is reconstructed using Method 1, Method 2, and Method

. There is a no systematic way to evaluate the accuracy of the recon-

tructed RV signals in Fig. 14 . Therefore, it is compared with the mo-

ion and with the BOLD signals in 90 functional ROIs. Considering the

ertical bands in heat maps and subject’s head motion traces, it can

e seen that the proposed method detects motion and signal consistent

ith deep breathes. For other portions of the timeseries, the BOLD sig-

al and head motions don’t indicate any prominent respiratory events

as estimated by the proposed method). 
9 
. Discussion 

.1. Impact on fMRI studies 

This work demonstrates the ability to compute the full RV signal

rom the fMRI data alone in a pediatric population, and we have made

otable advances with the approach previously proposed by Salas et al.,

emonstrated on an adult population ( Salas et al., 2021 ). An interest-

ng potential application of the developed method is enriching a large

olume of existing fMRI datasets through retrospective addition of respi-

atory signal variation information. For example, the Pediatric Imaging,

eurocognition, and Genetics (PING) study ( Jernigan et al., 2016 ) con-

ains fMRI images of 1493 participants (age 3 to 21 years old), where

o respiratory signals have been recorded. Cambridge Centre for Age-

ng and Neuroscience dataset ( Shafto et al., 2014 ; Taylor et al., 2017 ),

MAGEN study ( Mascarell Mari či ć et al., 2020 ), and UK Biobank Brain

maging project ( Miller et al., 2016 ) are some other examples of widely

sed fMRI datasets where respiratory signals were not recorded. Even

n the fMRI studies where respiratory data is collected, a significant pro-

ortion of the data is corrupted and not usable. In our analysis, up to

7% of the respiratory signals in the HCP-D project are not usable. More-

ver, challenges of respiratory signal measurement can be different in

ach fMRI site because of different technologies or research assistants.

or example, the fMRI data in Adolescent Brain Cognitive Development
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Fig. 11. Impact of window size on reconstruction accuracy in term of MAE, MSE, correlation and DTW values. Comparing the median and mean values shows that 

using larger windows improve the generalization ability of CNN model. 

Fig. 12. Impact of output point location, beginning, 

middle or end point of the moving window, on network’s 

performance with window size 64. The different perfor- 

mance of three methods implies the importance of using 

input information properly. 
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tudy is collected at 21 different sites across the US ( Casey et al., 2018 )

r for the IMAGEN study, across eight different countries in Europe.

he method presented here could contribute RV signals to help improve

hysiological noise compensation. 

In addition to removing respiratory effects from fMRI data using

he reconstructed RV timeseries by the proposed method, the RV data
10 
ould provide valuable insight into brain physiology and interpretation

f BOLD signals. Higher-order properties of the respiratory signals, such

s RV timeseries, might be used to probe autonomic nervous system

unction and emotional response, which could add depth to the interpre-

ation of fMRI data. Furthermore, the reconstructed RV waveform could

rovide useful information regarding whether the respiration depth and
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Fig. 13. Performance of the proposed method in reconstruction of whole RV signal. At the switch point between different method, there is a jump in RV value 

(shown by pink arrows) that indicates the different performance of different methods. 

Fig. 14. Performance of the model on subjects with problematic respiratory patterns. A) signal from Class 6. B) signal from Class 5. Vertical black band in the heat 

maps could be created due to an isolated deep breath. Subjects head motion traces also could be created because of a prominent change in the breathing pattern. 

According to the information extracted from heat maps and head motion traces, the reconstructed RV appears to be accurate, at least during the deep breath. 
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ate of a subject differ from scan to scan, which might aid in interpreting

MRI data. 

Childhood is a period of rapid brain maturation. Inter-subject con-

istency has been used to study extrinsic and intrinsic systems in the

rain ( Hasson et al., 2010 ; Pajula et al., 2012 ; Ren et al., 2017 ). Remov-

ng BOLD components induced by changes in breathing rate and depth

educes the inter-subject variability ( Birn et al., 2014 ; Golestani and

hen, 2020 ). By reducing inter-subject variability via removal of res-
11 
iratory effects, the proposed method could enhance studies of human

rain in more realistic and natural settings. 

The effect of respiratory timeseries variation is particularly impor-

ant for resting-state functional connectivity because functional net-

orks are identified on the strength of spontaneous correlations between

ifferent regions, and spatially extended artifacts can adversely bias the

orrelations. It is well-established that the occurrence of neurodegener-

tive diseases causes changes in the brain resting-state functional con-
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ectivity ( Izadi-Najafabadi et al., 2022 ). Even in the early stage of the

eurodegenerative disease, it will be difficult for these patients to follow

ll the guidelines of the imaging process. The proposed method has po-

ential to eliminate the need for additional respiratory timeseries mea-

urement equipment and reduces the complexity. Furthermore, better

nderstanding and quantifying the physiological effects on fMRI stud-

es can accelerate the discovery of connectivity-based biomarkers for

iagnosing neurological disorders. 

.2. Comparison with HCP-YA and HCP-A 

We evaluated the respiratory signals of 614 subjects in HCP-D

HCD0001305 to HCD2996590), 624 subjects in HCP-YA (115,017 to

50,330), and 550 subjects in HCP-A (HCA6002236 to HCA9007968).

he age range for these projects are 5 to 21 years for Developmental,

2 to 35 years for Young Adult ( Smith et al., 2013 ), and 36 to 100 years

ld for Aging project ( Harms et al., 2018 ). Comparing the scan time of

CP-YA ( ∼15 min) with HCP-D and HCP-A ( ∼7 min), more data cor-

uption in HCP-YA project was expected. Using the quality control pro-

edure described in Section 2.2 of this paper, 14.36% of Developmen-

al dataset, 52.1% of Young Adult dataset and 18.9% of Aging dataset

ere categorized as Class 1 or good quality respiratory signal. Further

nvestigation of the three Class 1 datasets revealed that there is a big

ifference between the number of removable spikes. The average num-

er of removable spikes in the Developmental, Young Adult and Aging

roject are 449 ± 229, 51 ± 135, and 423 ± 314 respectively, indicating

ignificantly more data corruption in children and aging population ( p

 0.001). The amount of respiratory data corruption in these pediatric

nd aged population datasets reinforces the importance of developing

espiratory effect corrections. 

.3. Comparison with other methods 

A typical BOLD signal contains respiratory-related components fluc-

uating around 0.3 Hz ( Birn et al., 2006 ). In comparison with resting

tate studies where frequencies of interest are typically below 0.1 Hz,

his frequency is relatively high. It is likely that respiratory fluctua-

ions will mix with the BOLD fluctuations of interest at the typical TRs

sed for whole brain imaging (2 s or larger). In this respect, lowpass

r notch filters alone cannot remove respiratory-related components

ithout affecting the signal of interest. In HCP-D project where fMRI

olumes are acquired with a shorter TR, the respiratory frequency of

% of subjects is lower than 0.1 Hz which shows high overlap with

esting-state BOLD signals. Although, recent finding suggest that BOLD

esponse related to a neural activity can occur at higher frequencies as

ell ( Chen and Glover, 2015 ; Kalcher, 2014 ). In addition, filter-based

pproaches are inadequate for studying non-stationary signals, as the

OLD signal’s frequency contents change over time and cannot be de-

ned by a few frequencies. Apart from the main components related to

he respiratory cycles, the frequency of changes in respiration rate and

epth ( ∼0.03 Hz) overlaps with the frequencies of fluctuations of true

euronal-related BOLD components ( Birn et al., 2008 ). Since these non-

euronal BOLD components are severely mixed with neuronal-related

OLD components, filter-based methods are not effective for process-

ng them. Considering the high overlap, modeling methods based on

emi-quantitative measurements of belt traces such as RV are better ap-

roaches to remove respiratory confounds. 

Salas et al ., proposed a five layers CNN model with ReLU activa-

ion function to reconstruct the RV timeseries and tested the model on

CP-YA dataset ( Salas et al., 2021 ). In addition to having higher quality

espiratory traces, the HCP-YA provides fMRI images with lower head

otion and longer scan time meaning more input data to the CNN. In

ur model, we increased the number of hidden layers and filters to ex-

ract more effective and informative features. Mean ± SE of correlation

alues obtained using our models and Salas model were 0.558 ± 0.0098

nd 0.523 ± 0.0085, respectively for Method 2. Similar results obtained
12 
or other metrics including MSE, MAE and DWT. During 10 independent

uns of the model using ten-fold cross-validation strategy, our model

onverged to MSE = 0.15 for the training dataset after 23 ± 4 epochs,

hile it was 36 ± 9 epochs for Salas’ model. More accurate, faster, and

ore robust performance of our model show the importance of selec-

ion on hyper parameters. Salas et al. (2021) also used a single unit

ense network for RV estimation and achieved successful results. We

lso implemented single unit dense network, but it performed poorly

n HCP-D data. It may be because of the pre-processing steps in the

alas implementation, which included temporal smoothing and down-

ampling prior to training either model, or perhaps the increased mo-

ion, faster and more variable respiration in the children. In comparing

he proposed CNN with the Salas model, more details are provided in

he Supplementary Material. 

.4. Importance of loss function 

The loss function plays an important role in the model’s performance

s well as its architecture, since the loss function determines how well

he model fits the training data. Different metrics shows different per-

ormances for RV reconstruction ( Figs. 8 and 11 ), and the CNN’s perfor-

ance cannot be accurately represented by using them separately. Let’s

onsider two scenarios. 

Scenario 1: An accurate estimation of an RV signal with high am-

litude and variations. In this case, the R 

2 will have a large value that

ndicates good performance of CNN. On the other hand, the value of

SE or MAE could be very low (indicating good performance) or high

because the amplitude of the RV signal is high and a small difference

etween the real and estimated RV can increase their value). Fig. 5 b and

 is an example of this scenario. 

Scenario 2: Estimation with low MSE or MAE. This scenario happens

ainly when the RV signal has a low amplitude. In these cases, the

alue of RV can be high or low, and the low value of MSE or MAE

oesn’t guarantee a good RV estimation. Fig. 5 d and e are example of

his situation. 

In this study, several performance metrics were used to assess the

erformance of the CNN. In addition to performance metrics presented,

dditional performance metrics might also be considered such as the

osine Similarity (CS). Each metric has subtle differences, for example

he R 

2 only considers the trend of changes, but CS considers both the

rend of changes and distance between two vectors. 

To have an accurate comparison between the real and estimated RV

nd monitor the CNN’s performance, a new loss function that uses sev-

ral metrics could be helpful. One important issue regarding a new hy-

rid loss function will be the weight of each metric. If we consider a

oss function like 𝜔 1 𝑀𝑆𝐸 + 𝜔 2 𝑀𝐴𝐸 + 𝜔 3 𝐶𝑆, the value of weights ( 𝜔 )

hould be selected carefully. 

.5. Future work 

In this study we used respiratory belt traces measured simultane-

usly with the fMRI scan. Unfortunately, the redundant information on

he abdominal respiratory belt is not backed up by any other source such

s a chest belt. It means that it will index both respiratory motions and

on-respiratory motions involving abdominal shifts and/or abdominal

ightening, but not chest breathing. Therefore several semi-quantitative

easurements such as RV, respiratory volume per time ( Birn et al.,

006 ), and envelope of the respiratory trace ( Power et al., 2018 ) have

een proposed to index respiratory phenomena from the belt traces. In a

tudy by Golestani and Chen ( Golestani and Chen, 2020 ), effect of end-

idal partial pressure of carbon dioxide (P ET CO 2 ) clamping and retroac-

ive CO 2 correction on functional connectivity and weighted global

rain connectivity is compared. Despite expecting similar results from

oth approaches, they found significant differences between clamped

nd retroactively corrected connectivity values. In this study we showed

hat CNN has a great ability to reconstruct the respiratory variation
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nformation from BOLD signals. Therefore, in fMRI studies with large

umber of participants like UK Biobank, it is reasonable to record the

espiratory information of a small portion of the participants using an

ccurate method such as optical or inductance respiratory plethysmog-

aphy and design a CNN model to reconstruct the RV signals and remove

ts effect from the entire cohort. 

In addition to other sources of head motion, recent advances in MRI

canning acquisition techniques have revealed that respiration is also

n important contributing factor ( Fair et al., 2020 ; Kaplan et al., 2022 ).

hile existing motion correction techniques aim to eliminate all mo-

ion artifacts, they fail to differentiate respiration-related perturbations

hat do not disrupt BOLD signals from spontaneous isolated head move-

ents. Head motion due to respiration may lead to an unnecessary re-

uction in data retention as frame motion estimates selected for elimi-

ation may contain a residual respiratory component that needs to be

aken into account independently. These artifacts can be removed by

pplying notch filter, where appropriate age-specific cut-off frequency

mproved data quality and data retention ( Kaplan et al., 2022 ). In the

uture work, a CNN model could be trained to determine the main fre-

uency of respiration and design a notch filter customized for each sub-

ect. 

In this paper, the fMRI data that was used selected as good quality

espiratory signals. It is possible that discarded scans may have some

pecific noise properties that is not present in the scans selected for

raining. This may result in overtraining to properties of the selected

atasets, and potentially create survivorship bias. For example, subject

tress may influence the data and we end up discarding scans where par-

icipants are stressed. In HCP-D project, subjects were scanned 4 times,

wo scans per day on two days. Our investigation showed that 35 sub-

ects (5.7% of subjects) have corrupted respiratory signal at day-1, and

ave clean respiratory signal at day-2, or vice versa. This fact may in-

icate that the subject’s had different emotional state at two different

ays. Having access to respiratory variation information of these sub-

ects can help the interpretation of the data. Respiratory signals of three

ubjects with corrupted data at one day and clean data at another day

re shown in Supplementary data. In this study we didn’t use scans with

orrupted respiratory signals, as we needed input-output pairs to train

he model. Therefore, our trained model is slightly biased to subjects

ith clean respiratory behaviour. In the future works, it is worth re-

eating the fMRI scan until obtaining a clean respiratory signal (for the

ubject with corrupted respiratory data) and include them in the train-

ng/testing dataset to have a model with less bias. 

. Conclusion 

Considering the difficulties of respiratory signal recording during

MRI scans in pediatric populations, it is important to understand and

evelop respiratory effect correction pipelines that address the problems

nherent to this population. In this paper we proposed a deep neural net-

ork model for reconstruction of full RV timeseries in a pediatric pop-

lation. The obtained results show that the extraction of respiratory RV

imeseries directly from fMRI-BOLD data of pediatric population is pos-

ible, especially when the subject has a notable change in their breath-

ng pattern. There exists room to improve the RV timeseries reconstruc-

ion accuracy by modifying the architecture of the model, loss func-

ion, considering frequency-domain information, subject’s head motion

races, and using more accurate respiratory traces as the training data of

NN. 
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