Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59113
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFord, Jonathanen
dc.contributor.authorSadgrove, Edmunden
dc.contributor.authorPaul, Daviden
dc.date.accessioned2024-05-08T07:01:20Z-
dc.date.available2024-05-08T07:01:20Z-
dc.date.issued2023-10-
dc.identifier.citationSmart Agricultural Technology, v.5, p. 1-12en
dc.identifier.issn2772-3755en
dc.identifier.urihttps://hdl.handle.net/1959.11/59113-
dc.description.abstract<p>Effective weed management in pastures is critical for maintaining the productivity of grazing land. Autonomous ground vehicles (AGVs) are increasingly being considered for weed localization and treatment in agricultural land. Weeds, however, can be difficult to distinguish from background plants, due to similarities in colour, shape and texture. While deep learning approaches can be used to solve the localization issue, they are computationally expensive, and require a large volume of training images in order to combat overfitting. In this paper we present a novel Extreme Learning Machine based network for segmenting weeds from the background pasture. The proposed method utilizes a combination of LBP, HOG and colour features, and is tested on four small datasets, achieving a high mean Intersection over Union of 87.1, 79.5, 81.6 and 87.6 for Bathurst burr, horehound, thistle and serrated tussock respectively.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofSmart Agricultural Technologyen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleDeveloping an Extreme Learning Machine Based Approach to Weed Segmentation in Pasturesen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.atech.2023.100288en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameJonathanen
local.contributor.firstnameEdmunden
local.contributor.firstnameDaviden
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailjford6@une.edu.auen
local.profile.emailesadgro2@une.edu.auen
local.profile.emaildpaul4@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber100288en
local.format.startpage1en
local.format.endpage12en
local.peerreviewedYesen
local.identifier.volume5en
local.access.fulltextYesen
local.contributor.lastnameForden
local.contributor.lastnameSadgroveen
local.contributor.lastnamePaulen
dc.identifier.staffune-id:jford6en
dc.identifier.staffune-id:esadgro2en
dc.identifier.staffune-id:dpaul4en
local.profile.orcid0000-0002-8710-9900en
local.profile.orcid0000-0002-2428-5667en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/59113en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDeveloping an Extreme Learning Machine Based Approach to Weed Segmentation in Pasturesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorFord, Jonathanen
local.search.authorSadgrove, Edmunden
local.search.authorPaul, Daviden
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/afe05b26-de3a-47ff-8e2b-391a8bf66efden
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.year.presented2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/afe05b26-de3a-47ff-8e2b-391a8bf66efden
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/afe05b26-de3a-47ff-8e2b-391a8bf66efden
local.subject.for2020460304 Computer visionen
local.subject.for2020460103 Applications in life sciencesen
local.subject.seo2020100503 Native and residual pasturesen
local.codeupdate.date2024-07-03T12:04:40.932en
local.codeupdate.epersondpaul4@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for20204602 Artificial intelligenceen
local.original.seo2020tbden
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2024-05-08en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/DevelopingFordSadgrovePaul2023JournalArticle.pdfJournal Article2.56 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 2, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons