Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/59113
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ford, Jonathan | en |
dc.contributor.author | Sadgrove, Edmund | en |
dc.contributor.author | Paul, David | en |
dc.date.accessioned | 2024-05-08T07:01:20Z | - |
dc.date.available | 2024-05-08T07:01:20Z | - |
dc.date.issued | 2023-10 | - |
dc.identifier.citation | Smart Agricultural Technology, v.5, p. 1-12 | en |
dc.identifier.issn | 2772-3755 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/59113 | - |
dc.description.abstract | <p>Effective weed management in pastures is critical for maintaining the productivity of grazing land. Autonomous ground vehicles (AGVs) are increasingly being considered for weed localization and treatment in agricultural land. Weeds, however, can be difficult to distinguish from background plants, due to similarities in colour, shape and texture. While deep learning approaches can be used to solve the localization issue, they are computationally expensive, and require a large volume of training images in order to combat overfitting. In this paper we present a novel Extreme Learning Machine based network for segmenting weeds from the background pasture. The proposed method utilizes a combination of LBP, HOG and colour features, and is tested on four small datasets, achieving a high mean Intersection over Union of 87.1, 79.5, 81.6 and 87.6 for Bathurst burr, horehound, thistle and serrated tussock respectively.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Smart Agricultural Technology | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Developing an Extreme Learning Machine Based Approach to Weed Segmentation in Pastures | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.atech.2023.100288 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Jonathan | en |
local.contributor.firstname | Edmund | en |
local.contributor.firstname | David | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | jford6@une.edu.au | en |
local.profile.email | esadgro2@une.edu.au | en |
local.profile.email | dpaul4@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.identifier.runningnumber | 100288 | en |
local.format.startpage | 1 | en |
local.format.endpage | 12 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 5 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Ford | en |
local.contributor.lastname | Sadgrove | en |
local.contributor.lastname | Paul | en |
dc.identifier.staff | une-id:jford6 | en |
dc.identifier.staff | une-id:esadgro2 | en |
dc.identifier.staff | une-id:dpaul4 | en |
local.profile.orcid | 0000-0002-8710-9900 | en |
local.profile.orcid | 0000-0002-2428-5667 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/59113 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Developing an Extreme Learning Machine Based Approach to Weed Segmentation in Pastures | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Ford, Jonathan | en |
local.search.author | Sadgrove, Edmund | en |
local.search.author | Paul, David | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/afe05b26-de3a-47ff-8e2b-391a8bf66efd | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.year.presented | 2023 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/afe05b26-de3a-47ff-8e2b-391a8bf66efd | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/afe05b26-de3a-47ff-8e2b-391a8bf66efd | en |
local.subject.for2020 | 460304 Computer vision | en |
local.subject.for2020 | 460103 Applications in life sciences | en |
local.subject.seo2020 | 100503 Native and residual pastures | en |
local.codeupdate.date | 2024-07-03T12:04:40.932 | en |
local.codeupdate.eperson | dpaul4@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 4602 Artificial intelligence | en |
local.original.seo2020 | tbd | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.date.moved | 2024-05-08 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/DevelopingFordSadgrovePaul2023JournalArticle.pdf | Journal Article | 2.56 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
3
checked on Nov 2, 2024
This item is licensed under a Creative Commons License