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Effective weed management in pastures is critical for maintaining the productivity of grazing land. Autonomous 
ground vehicles (AGVs) are increasingly being considered for weed localization and treatment in agricultural 
land. Weeds, however, can be difficult to distinguish from background plants, due to similarities in colour, shape 
and texture. While deep learning approaches can be used to solve the localization issue, they are computationally 
expensive, and require a large volume of training images in order to combat overfitting. In this paper we present 
a novel Extreme Learning Machine based network for segmenting weeds from the background pasture. The 
proposed method utilizes a combination of LBP, HOG and colour features, and is tested on four small datasets, 
achieving a high mean Intersection over Union of 87.1, 79.5, 81.6 and 87.6 for Bathurst burr, horehound, thistle 
and serrated tussock respectively.
1. Introduction

The world population is projected to reach 9.7 billion by 2050 [1]. 
With the continued growth in population, it is becoming increasingly 
important to maximize agricultural yield using the resources available, 
including arable land, chemicals, and manpower. Precision agriculture, 
driven by the artificial intelligence revolution, is an essential com-

ponent in the solution to ensuring that world agriculture maintains 
sufficient output to feed a growing population [44]. One important ap-

plication of artificial intelligence in agriculture is the use of computer 
vision to detect and classify weeds in crop fields and pastures [27]. Ef-

fective weed detection will allow the selective spraying of undesirable 
plants, while avoiding damage to other plants in the field, and reducing 
the amount of herbicide used, which reduces both cost and the poten-

tial harmful effects of chemicals on human health and the environment 
[27].

The majority of weed detection studies found in the literature in-

volve crop fields, including sugarbeet [39,30,29], soy [14,47], lettuce 
[38], carrot [25,22,32], and grain crops [26,49]. In such an environ-

ment, the segmentation of vegetation from background soil and crop 
stubble can be carried out using a vegetation index, such as Excess 
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to Maximise Agricultural Productivity” CRC. The authors would like to thank the NSW Department of Primary Industries and Agent Oriented Software for providing 
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* Corresponding author.

Green (ExG). Such segmented vegetation then needs to be analysed to 
determine whether it is part of the crop plant, or a weed.

Fewer studies have been carried out on the detection of weeds in 
pastures. However, there has been considerable research on the task of 
locating dockleaf in pastures in Europe [5,45,51,24,11], with an accu-

racy of 83.4% achieved using conventional machine learning [5], and 
95.6% [45] to 96.9% [51] for deep learning. It should be noted that the 
above studies each used different datasets, making it difficult to make 
a meaningful comparison between them. In Australia, one study looked 
at the detection of serrated tussock, a weed of national interest, on a 
dataset collected in farmland in northern NSW, using unsupervised fea-

ture learning, k-means clustering and a linear classifier to achieve an 
accuracy of 92.9% [20]. In another study a fusion of several features 
was passed to a SVM to classify images of serrated tussock, Chilean 
needlegrass and native grass clumps from south east Australia, with a 
best accuracy of 80.9% achieved using a combination of LBP and HOG 
features [16].

In other work, Olsen et al. [37] developed an extensive dataset 
comprising images of eight weed species of national significance from 
North-East Australia, and produced a baseline accuracy of 95.1% and 
95.7% using Inception-v3 [46] and ResNet-50 [18] deep learning mod-
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els respectively. These results were further improved by Hu et al. [19]

who used a graph-based deep learning network to achieve an accuracy 
of 98.1%. On the other hand, Calvert et al. achieved an accuracy of 
98.1% on a dataset of Harrisia cactus growing in dry Eastern Australian 
rangelands, using ResNet-50 [8]. They went on to test their robotic spot 
spraying vehicle, AutoWeed, in the field, achieving a weed knock-down 
rate of 95.0% to 96.3% compared to a rate of 98.3% that was achieved 
using manual application of herbicide [9].

In contrast, Sadgrove et al. [40–43] utilised a shallow ANN with a 
partially connected hidden layer, which was trained using a variation of 
the Extreme Learning Machine algorithm (ELM, discussed in the Meth-

ods section) called the Colour Feature ELM (CF-ELM), to classify images 
of thistle and horehound. These models were able to obtain a precision 
of 82% - 98% and recall of 84% - 94% for thistle, and a precision of 
84% and recall of 97% for horehound. In other agricultural studies, 
Maimaitijiang et al. [31] used an ELM to estimate biochemical and bio-

physical parameters, such as chlorophyll content, nitrogen content and 
biomass from aerial images, and Aqel et al. [4] use an ELM to classify 
four different plant leaf diseases.

The ELM has also been used in a variety of computer vision problems 
aside from weed detection. In one study [2], a multilayer, ELM-based 
autoencoder was used to segment hyperspectral satellite imagery into 
land-use categories. Dixit and Hedge [13], also working with hyperspec-

tral satellite imagery, developed an ELM model to classify vegetation 
cover as tree, shrub or grassland. Dewi et al. [12] used an ELM model 
to classify leaves of different varieties of Patchouli. Turkoglu and Han-

bay [50], similarly used an ELM model to classify leaves of different 
species of plant, testing their approach on multiple publicly available 
datasets.

In spite of the studies discussed in the previous paragraphs, the use 
of ELMs for weed classification in agriculture remains largely unex-

plored, and those studies that have been done have avoided the more 
complex problem of segmentation, in which the specific location of 
weeds within an image needs to be determined. In order to explore 
this space further, we designed and implemented an ELM-based model 
which inputs hand crafted image features, and outputs a fine-grained 
weed heat-map. So that the model can handle large, and arbitrarily 
sized images, the model is passed, like a convolutional filter, across the 
feature cube extracted from the image. This generates multiple heat-

maps for different image regions, which are then combined into a single 
segmentation result for the entire image. Using the ELM as a convolu-

tional filter results in a significant reduction in the computational cost 
of feature extraction, as the extraction need only be completed in a 
single pass (for the entire image), as opposed to separately for multi-

ple, overlapping frames, as would be required in the sliding window 
approach. This model has been developed to be part of the detect-and-

spray pipeline of an autonomous ground vehicle, allowing site-specific 
management of weeds in pastures, thereby reducing herbicide use and 
the manpower required to control weeds.

The main contributions of this paper are:

1) Use of a novel ELM-based network to produce a fine-grained seg-

mentation of several datasets containing weeds of interest in south-

east Australian pastures.

2) Presentation of the results of a rigorous comparison of different LBP 
and HOG hyperparameters, used on several weed datasets collected 
from southeast Australia.

The remainder of the paper will be organised as follows. Section 2

provides a brief review of related research. Section 3 describes the 
approach used in this study. Section 4 gives the results of the study. Sec-

tion 5 provides an explanation of how this study fits into the broader 
research landscape. Finally section 6 provides some possible future di-
2

rections leading on from this work.
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2. Related work

In this section, we will discuss previous studies on weed detection 
in crop-lands and pastures, focusing on studies which have used Local 
Binary Patterns (LBPs), Histogram of Oriented Gradients (HOG) and 
colour features. We will also present a review of studies involving the 
fine-grained segmentation of pictures into regions of crops and weeds.

2.1. Feature extraction

LBPs have been at the core of many conventional classifiers used 
for the classification of weeds in crop fields [28,14,35,26] and pastures 
[5,51,16]. While some studies either do not specify their choice of hy-

perparameters or use default values,1 there are a few cases where a 
more extensive comparison of different LBP descriptors has been car-

ried out, as summarized in Table 1. In one study [30], the LBP features 
were extracted from multiple colour bands including a vegetation index 
(NDVI), and the gradient and double gradient of each band was also 
considered. In another study [16], LBP features were extracted from 
a total of 27 bands from both the near infrared and visible spectrum, 
and concatenated to form the final feature vector. On the other hand, 
two studies considered multiple combinations of radius and number of 
neighbours in their analysis [5,35].

HOG features are also commonly used in plant classification algo-

rithms [38,14,16,23]. The above cited papers, however, do not specify 
their choice of hyperparameters for HOG features, such as the number 
of orientation bins, or whether signed or unsigned orientation is used. 
Based on the original HOG paper of Dalal and Triggs [10], performance 
of HOG features for pedestrian identification improves as the number 
of orientation bins is added, up to a total of roughly 9 bins for unsigned 
orientation, however the optimal number of bins for a weed classifica-

tion problem may be different to this.

A range of colour features has been used in previous studies on 
weed classification and segmentation in agriculture. These features in-

clude the colour histogram [3], as well as statistical features such as the 
mean, standard deviation, minimum, maximum, range, median, skew-

ness, kurtosis and entropy, either applied to different colour channels 
[14], or a mixture of colour channels and vegetation indices [30,21].

2.2. Image segmentation

The majority of studies on the fine-grained segmentation of agri-

cultural images use convolutional neural networks, such as SegNet [6], 
fully convolutional networks [34,29], or custom encoder/decoder net-

works [22,33,32,39].

The use of conventional machine learning in the segmentation of 
agricultural imagery is uncommon. However, in one study, images of 
sugarbeet seedlings and weeds were broken up into key-points, corre-

sponding to 10 × 10 pixel squares, and each keypoint was classified, 
based on features extracted from the 80 × 80 pixel neighbourhood, and 
passed to a Random Forest [28]. The same authors went on to consider 
an object-based approach, where an object corresponds to an individual 
connected component of plant pixels, and a combination of the object 
and key-point based approaches [30]. Where the connected component 
corresponds to a single class, the object-based approach can be used for 
classification, but if the connected component consists of both classes, 
the object-based method will return an intermediate result (i.e. part 
way between crop and weed). In the latter case, the key-point based ap-

proach can then be used to further segment the component into regions 
consisting of crop plants, and regions consisting of weeds.

The method discussed in the preceding paragraph, may work well 
in crop fields, where plants can easily be separated from background 
1 Here we take default values to be 8 neighbours and a radius of 1.
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Table 1

LBP hyperparameters (𝑟 = radius, 𝑛 = number of neighbours) and 
colour channels (Grey = greyscale; NIR = near infrared; R, G and B 
from the RGB colour space; NDVI = normalized difference vegetation 
index; H, S and L from the HSL colour space where the value for R is 
replaced by NDVI) used in previous studies on weed detection.

Study Hyperparameters Colour Channel Other

Dockleaf in 
pasture [5]

𝑟 = 1 … 16
𝑛 = 2 … 30

Grey

Canola, radish 
and barley [35]

𝑟 = 1, 𝑛 = 8
𝑟 = 2, 𝑛 = 16
𝑟 = 3, 𝑛 = 24

Grey Upright, and 
Uniform

Tussock and 
needlegrass [16]

𝑟 = 2, 𝑛 = 8 16 visible and 
11 NIR bands

Sugarbeet [30] 𝑟 = 1, 𝑛 = 8 NDVI, G, B, H, 
S and L

Also uses the 
gradient and 
Laplacian of 
each channel

Table 2

List of hyperparameters considered for features used in this study.

Feature Hyperparameter Range of Values MATLAB argument

HOG Number of Bins∗ 4,6,9,12,15 NumBins

HOG Signed Orientation T/F UseSignedOrientation

LBP Number of Neighbours 8, 16, 24∗∗ NumNeighbors

LBP Radius 1, 2, 3, 4, 6, 8, 10 Radius

LBP Rotational Invariance T/F Upright

∗ When signed orientation is used, the number of bins is effectively doubled.
∗∗ The following combinations of radius (r) and number of neighbours (n) were not consid-

ered: (r=1,n=16), (r=1,n=24), (r=2,n=24).
Table 3

List of colour spaces/indices used in this 
study.

Name Description Formula

Grey Greyscale 1
3
(𝑅+𝐺 +𝐵)

ExG Excess Green 2 ×𝐺 −𝑅−𝐵

ExR Excess Red 1.4 ×𝑅−𝐺

ExGR Excess Green 𝐸𝑥𝐺 −𝐸𝑥𝑅

minus Excess Red

soil using a vegetation index, such as NDVI. In the more complex envi-

ronment encountered in pastures, where we have green weeds against a 
backdrop of green pasture elements (the so called green on green prob-

lem), another approach is needed.

3. Methods

All coding was implemented in MATLAB using built in functions 
wherever possible, including extractHOGFeatures for HOG features, 
and extractLBPFeatures for LBP features.2 The above MATLAB 
functions allow for a number of different customizable options. Accord-

ingly, tests were carried out to determine the appropriate hyperparam-

eters to use. The list of all hyperparameters tested in this work is given 
in Table 2. In addition to this, we used a range of vegetation indices 
as well as grayscale to produce a single colour channel image to be in-

putted into the feature extraction functions, as shown in Table 3. All 
tests were carried out on one of two Centos 7 systems with 192 Gb of 
memory and 32 Intel 2.5 Ghz CPU (hyperthreaded) cores.

2 Documentation for these functions can be found at https://au .mathworks .
com /help /vision /ref /extracthogfeatures .html and https://au .mathworks .com /
3

help /vision /ref /extractlbpfeatures .html respectively.
3.1. Local binary patterns

LBP features [36] are a texture analysis method in which the inten-

sity of a pixel is compared with its neighbours. Each neighbour is either 
classified as darker or brighter than the central pixel, meaning that the 
algorithm generates one bit of information per neighbour, as shown in 
equations (1) and (2).

𝑠(𝑥) =

{
1, 𝑥 ≥ 0
0, 𝑥 < 0

(1)

𝐿𝐵𝑃 (𝑔∗) =
𝑃−1∑
𝑝=0

𝑠(𝑔𝑝 − 𝑔∗)2𝑝 (2)

Here, 𝑠(𝑥) is a sign function, 𝐿𝐵𝑃 (𝑔∗) is the LBP descriptor for pixel 
𝑔∗, 𝑃 is the number of neighbours, and 𝑔 is the grey level of the pixel. 
The image can then be broken down into rectangular blocks, and an 
LBP histogram (LBPH) calculated for each block. If 𝑃 is set to 8, then 
the LBPH will have 256 bins, one for each of the possible descriptor 
values. In MATLAB, the extractLBPFeatures method automatically 
combines all patterns that are not “uniform”, as described by [36], into 
a single bin, meaning that the number of bins will be 𝑃 ∗ (𝑃 − 1) + 3, or 
𝑃 +2 depending on whether rotational invariance is used. For this study, 
both rotationally invariant and rotationally variant features were con-

sidered, and a range of different values for the number of neighbours, 
and the radius of the neighbours were tested. Fig. 1 gives an example of 
LBP features extracted from image patches of an image taken from the 
tussock dataset.

3.2. Histogram of oriented gradients

HOG descriptors were originally designed as a solution to the prob-

lem of detecting pedestrians in images [10]. In HOG feature extraction, 
the image is divided into overlapping blocks of cells, and the occurrence 
of gradient (or edge) orientation is calculated. The orientation is clas-
sified into equal bins from 0° to 180° for unsigned, and 0° to 360° for 

https://au.mathworks.com/help/vision/ref/extracthogfeatures.html
https://au.mathworks.com/help/vision/ref/extracthogfeatures.html
https://au.mathworks.com/help/vision/ref/extractlbpfeatures.html
https://au.mathworks.com/help/vision/ref/extractlbpfeatures.html
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Fig. 1. Example LBP features extracted from image patches containing tussock (blue), and background pasture (red). Hyperparameters used were radius=1, number 
of neighbours = 8, rotational invariance = True.
signed orientation. The number of orientation bins can be customized in 
MATLAB, and so this study considered a range of possible bin numbers, 
as well as testing both signed and unsigned orientation.

3.3. Colour features

In addition to the textural features discussed in the previous two 
subsections, colour features were also considered, including the mean, 
standard deviation, minimum, maximum, range, median, skewness and 
kurtosis of each channel, using either the RGB or YCbCr colour spaces.

3.4. Datasets

RGB Images were collected by the NSW Department of Primary In-

dustries (DPI) from pastures in a range of locations across south east 
Australia. Four separate datasets were chosen for testing as shown in 
Table 4. Images were taken using a Mako G507 camera mounted on an 
unmanned ground vehicle, and facing straight downwards. The camera 
was at a height of 1200 mm. Images were annotated under supervision 
of experts from DPI, by drawing a polygon around the weeds of interest, 
using the VGG image annotator [15]. This provided a good compromise 
between the accuracy of the annotation, and the time taken to anno-

tate each image. Care was taken to ensure that there was no overlap 
between any two images in a dataset, in order to avoid polluting the 
test set with data from the training set.

For the Bathurst burr, horehound and thistle datasets, tests were car-

ried out using 5 ×10 fold cross-validation. For the tussock dataset, there 
were sufficient images to produce 10 entirely independent train/test 
split, with each image used exactly once, either in a single training set 
or a single test set. Statistical significance was determined using a cor-

rected repeated k-fold cv test [7] for the Bathurst Burr, Horehound and 
Thistle datasets. For the Tussock dataset, the train/test sets were en-

tirely independent, so a standard t-test was used. During each iteration 
of cross validation, the train/test splits were identical for each tested 
feature, meaning that a two-tailed, paired t-value was used to deter-

mine significance, with 𝛼 = 0.05, and 49 (or 9 for the Tussock dataset) 
4

degrees of freedom.
For all datasets, stratification was used when determining the splits. 
Specifically, each image was placed in one of two pseudo-classes, 
based on the percentage coverage of weed in that image. For compos-

ite datasets, with multiple sub-sets taken at different locations and/or 
times, each sub-set was split into pseudo-classes separately, yielding 
2 ×𝑁 pseudo-classes, where 𝑁 is the number of sub-sets in the dataset.

In order to see if a fusion of features could improve on the use of 
a single feature, a set of features was generated for each dataset, con-

sisting of the two colour features, the best LBP feature for each choice 
of radius, and the best HOG feature for each choice of number of bins, 
giving a total of 14 features. Starting with the best individual feature, 
as determined by the individual feature tests, additional features were 
added incrementally, choosing the feature that produced the best re-

sults during each iteration.

3.5. Extreme learning machine

The Extreme Learning Machine (ELM) is a fast learning algorithm 
proposed by Huang and Seiw [17] for a single hidden layer feed forward 
neural network. In the ELM, the hidden layer weights are randomly as-

signed, and remain unchanged during the training process. The hidden 
layer outputs 𝐇, can be found using equation (3), where 𝐖 (𝐛) is the 
hidden layer weights matrix (biases vector), and 𝑔 is the activation func-

tion.

𝐇 = 𝑔(𝐖𝐗+ 𝐛) (3)

The final layer weights 𝛽 are then calculated using the closed form 
solution given in equation (4), where † is the Moore-Penrose pseudo-

inverse.

𝛽 =𝐇†𝐓 (4)

While the ELM algorithm described in the paragraph above uses ran-

dom hidden layer weights, further studies indicated that hidden layer 
weights which had been computed from the training data in some way, 
such as the constrained ELM [52] and computed input weights [48], 

produced superior results. In this study, we use the constrained differ-
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Table 4

List of datasets used in this study.

Dataset Weed Species Location Date of Collection

Bathurst Burr Bathurst Burr 
(Xanthium spinosum)

Ferndale 
(34.636S 147.833E)

4-2-2022

Horehound Horehound 
(Marrubium vulgare)

Yellangelo 
(34.861S 149.169E)

13-10-2021 
23-11-2021

Thistle Scottish Thistle 
(Onopordum acanthium)

Jugiong 
(34.860S 148.297E)

19-10-2021

Saffron Thistle 
(Carthamus lanatus)

Binalong 
(34.690S 148.644E)

22-11-2021

Yellangelo 
(34.861S 149.168E)

23-11-2021

Clarkefield 
(37.480S 144.765E)

20-01-2022

Tussock Serrated Tussock 
(Nassella trichotoma)

Yellangelo 
(34.861S 149.169E)

13-10-2021
Table 5

Syntax and operations used in this paper.

Syntax and methods Explanation

∗ Convolution

[𝐗,𝐱] Join matrix with vector in 
horizontal direction

𝐗[∶, 𝑘] Submatrix of 𝑋 with all rows, and 
only the kth column(s).

⊘ Element-wise (Hadamard) 
division

𝚜𝚊𝚖𝚙𝚕𝚎+− Random sampling of positive and 
negative pair

𝚒𝚗𝚒𝚝 Method for initializing weights

𝚏𝚕𝚊𝚝𝚝𝚎𝚗 Operation for converting matrix 
into vector

𝚞𝚗𝚏𝚕𝚊𝚝𝚝𝚎𝚗 Operation for converting vector 
into square matrix

𝚛𝚊𝚗𝚍 Operation for generating a 
random number

ence (CD-weights) method of [52], and the sigmoid activation function, 
which is shown in equation (5).

𝑔(𝑥) = 1
1 + 𝑒−𝑥

(5)

3.6. Proposed model

Conceptually, it is beneficial for us to treat both the feature extractor 
and the ELM classifier as convolutional kernels. The proposed workflow 
is given below in a “procedural” format. In MATLAB, however, most 
steps can be simplified using matrix (or tensor) manipulations. We start 
with the following components:

• 𝐅𝐟 : the convolutional kernel containing the feature extractor, pa-

rameterized by the feature extractor 𝐟
• 𝐄𝐖,𝐛,𝛽 : the convolutional kernel containing the ELM classifier, pa-

rameterized by the weights and biases of the ELM.

• 𝐌: the operation for unflattening and combining the output from 
𝐄𝐖,𝐛,𝛽

We also have a set of input images and corresponding ground truth 
weed heatmaps: (𝐈, 𝐋) ∈ , and a training and validation set, 𝑡 and 𝑣, 
where 𝑡 ∪ 𝑣 =  and 𝑡 ∩ 𝑣 = ∅. An explanation of the syntax used in 
this section is provided in Table 5.

To train the ELM, we first calculate the input and target matrices, 𝑋
5

and 𝑇 , using Algorithm 1.
Algorithm 1 Generate training matrices.

Require: 𝑡

Require: 𝐅𝐟

1: 𝐗 ← 𝟎0×0
2: 𝐓 ← 𝟎0×0
3: for (𝐈, 𝐋) ∈ 𝑡 do

4: 𝐉 = 𝐈 ∗ 𝐅𝐟
5: for 𝐉𝐩 ∈ 𝐉 do

6: 𝐋𝐩 ← corresponding ̂𝐋 ∈ 𝐋
7: 𝐗 ← [𝐗, 𝚏𝚕𝚊𝚝𝚝𝚎𝚗(𝐉𝐩)]
8: 𝐓 ← [𝐓, 𝚏𝚕𝚊𝚝𝚝𝚎𝚗(𝐋𝐩)]
9: end for

10: end for

11: return (𝐗, 𝐓)

Now we can calculate the parameters of the ELM using Algorithm 2. 
With respect to hidden layer parameter initialization, each sample in 𝐗
is considered positive (respectively negative), if its corresponding target 
in 𝐓 is composed entirely of 1s (respectively 0s). If the target is com-

posed of a mixture of 1s and 0s, then it is ignored. To combat imbalance 
in the dataset, negative samples (as defined in the preceding sentence) 
are randomly removed from the training matrices, with a probability of 
𝑝 equal to 0.3, 0.3, 0.7 and 0 for the Batthurst Burr, Horehound, Thistle 
and Tussock datasets respectively.

Algorithm 2 Generate ELM weights.

Require: 𝐗
Require: 𝐓
Require: 𝑝 ∈ [0, 1]

1: 𝐖 ← 𝟎0×0
2: 𝐛 ← 𝟎0×0
3: for 𝑖 ← 1 to 𝑚 do

4: (𝑥+ , 𝑡+), (𝑥− , 𝑡−) ← 𝚜𝚊𝚖𝚙𝚕𝚎+−(𝐗, 𝐓)
5: (𝐰, 𝑏) ← 𝚒𝚗𝚒𝚝((𝑥+ , 𝑡+), (𝑥− , 𝑡−))
6: 𝐖 ← [𝐖, 𝐰]
7: 𝐛 ← [𝐛, 𝑏]
8: end for

9: 𝚔𝚎𝚎𝚙← [𝐭 ≠ 𝟎 ∨ 𝚛𝚊𝚗𝚍(0, 1) > 𝑝] for 𝐭 ∈ 𝐓
10: �̂�←𝐗[∶, 𝚔𝚎𝚎𝚙]
11: �̂�← 𝐓[∶, 𝚔𝚎𝚎𝚙]
12: 𝐇 ← 𝑔(�̂�𝐖 + 𝐛)
13: 𝛽 ←𝐇†�̂�
14: return (𝐖, 𝐛, 𝛽)

Using the trained ELM, we can calculate the predicted heatmap for 
an image, using Algorithm 3. The unflattening operation 𝐌 is given in 

Algorithm 4.
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Table 6

All Datasets: Mean IoU for colour features. The best result for each dataset is 
in bold. Results shown are the mean ±standard deviation, for a 5 × 10 fold 
cross validation (Bathurst burr, horehound and thistle datasets), or for a set 
of 10 entirely independent train/test splits (tussock). Results which are not 
significantly different from the best result in the column are labelled with 
a †.

Colour Channel Dataset

Bathurst Burr Horehound Thistle Tussock

RGB 74.9±9.9 70.8±6.5† 71.6±2.5 78.4±5.2†

YCbCr 79.5±7.7† 69.6±6.4† 74.3±3.5† 79.4±4.1†
Algorithm 3 Calculate predicted heatmap.

Require: 𝐈
Require: 𝐅𝐟
Require: 𝐄𝐖,𝐛,𝛽
1: 𝐉 = 𝐈 ∗ 𝐅𝐟
2: 𝐊 = 𝐉 ∗ 𝐄𝐖,𝐛,𝛽
3: 𝐘 =𝐌(𝐊)
4: return 𝐘

Algorithm 4 Unflatten and combine output of ELM.

Require: 𝐊
1: 𝐘 ← 𝟎
2: 𝐂 ← 𝟎
3: for 𝐤𝐩 ∈𝐊 do

4: �̂�𝐩 ← 𝚞𝚗𝚏𝚕𝚊𝚝𝚝𝚎𝚗(𝐤𝐩)
5: 𝐘𝐩 ← corresponding �̂� ∈𝐘
6: 𝐂𝐩 ← corresponding �̂� ∈𝐂
7: 𝐘𝐩 ←𝐘𝐩 + �̂�𝐩
8: 𝐂𝐩 ←𝐂𝐩 + 𝟏
9: 𝐘 ←𝐘 ⊘𝐂

10: return 𝐘
11: end for

In this study, all images were of size (with height dimension first) 
2016 × 2400 × 3. The feature extraction kernel used a size of 48 × 48, and 
stride of 48 ×48. For HOG features, the cell size was set at 24 ×24, mean-

ing that each block consisted of 2 ×2 cells. The ELM kernel used a size of 
4 ×4 and stride of 1 ×1, corresponding to an image patch size of 192 ×192
and 48 × 48 respectively. The heatmap was downsampled by a factor of 
16, meaning that the ELM outputted a 12 ×12 flattened heatmap vector. 
If a by-pixel segmentation was required, then the heatmap could fur-

ther be upsampled, for example, using bilinear interpolation. However, 
for the purpose of determining when to switch herbicide spray nozzles 
on and off, a by-pixel segmentation is unnecessary, because the noz-

zles will have a limited accuracy. For this reason, we leave the heatmap 
downsampled in this study.

4. Results

The efficacy of individual features was first tested, according to the 
methodology in Section 3. The results are presented in Table 6 for 
colour features, Tables 7, 9, 11 and 13 for LBP features and Tables 8, 
10, 12 and 14 for HOG features. For these tests, the number of hidden 
layer neurons was varied from 100 to 1000, with only the best result 
shown for each feature. In most, but not all cases, this corresponded to 
a hidden layer size of 1000. Extensions of the figures listed in this sec-

tion are provided in the supplemental material, including the standard 
deviation of all results, and the number of neurons which produced the 
best result for each feature.

Out of the two colour spaces used for colour feature extraction, 
YCbCr performed best for three datasets (Bathurst Burr, Thistle and 
Tussock), and was not significantly difference from RGB in the other 
dataset (Horehound). For LBP features, the best choice of colour chan-
6

nel was dependent on the dataset. For Bathurst Burr, ExGR performed 
best for all choices of radius, except for 𝑟 = 1. By contrast the best re-

sults for all choices of radius for horehound were achieved using the 
grey colour channel. For tussock and thistle, the grey and ExG colour 
channels produced the best results, depending on choice of radius. The 
choice of colour channel was also important for HOG features, with the 
best results for thistle and horehound being ExG, and for tussock being 
grey. By comparison, the best results for Bathurst burr was achieved us-

ing grey or ExGR, depending on the choice of number of bins. In terms 
of the choice of number of bins, 4 bins almost always produced infe-

rior results, whereas there was often no statistically significant different 
between the choice of bin numbers ranging from 6 to 15.

It should be pointed out that there was considerable variance in the 
results for individual features, in particular for the Bathurst burr and 
horehound datasets (SD as high as 12.6% and 9.2% respectively). This 
is likely due to the fact that there were only a small number of images in 
these datasets, and some images were considerably harder than others 
to segment, due to plants being run over and flattened by the AGV, 
or heavily occluded by other vegetation. The use of identical train/test 
splits for each tested feature, however, allowed us to still demonstrate 
statistically significant results for some features, because the individual 
features tended to be good or bad at the same train/test splits.

The best result by dataset and feature type (colour, LBP or HOG) is 
presented in Table 15. As can be seen, LBP produced the best features 
for three out of four datasets, while colour features were best for the 
thistle dataset. By comparison, HOG features performed much worse 
for three out of four datasets (e.g., up to 22.2% worse than the best 
LBP feature, in the case of the Bathurst burr dataset). For the tussock 
dataset, the performance of the best HOG feature was only 7.6% worse 
than the best LBP feature. We suggest that the reason that HOG fea-

tures performed better for this dataset is because the tussock plants are 
arranged with many blades of grass aligned in a rough radial pattern 
around the centre of the plant, resulting in a more pronounced feature 
value for particular bins, as compared to the more haphazard arrange-

ment of grass blades in the background pasture.

Fig. 2 displays the results of the feature fusion tests. For these tests, 
the number of hidden layer neurons was varied from 1000 to 3000, 
with only the best result shown for each feature fusion. In most, but 
not all cases, this corresponded to a hidden layer size of 3000. As can 
be seen, the results improved as features were added, but plateaued 
quickly, and even started to go back down as the fusion became larger. 
The improvements achieved through the fusion, as compared to the 
best individual feature, varied from 4.1% for the tussock dataset, to 
7.3% for the thistle dataset. Table 16 gives the order of features added 
to the fusion for each dataset. As can be seen, the best results were 
achieved using a combination of LBP, HOG and colour features for the 
Bathurst burr and horehound datasets. By comparison, the best result 
for the thistle and tussock datasets did not include any HOG or colour 
features respectively. The extraction of multiple features from an image 
can be computationally expensive, and so the smallest fusion which is 
not significantly different from the best result can be seen as a good 
candidate for a compromise between accuracy and speed. For Bathurst 
burr, horehound and thistle, this fusion consisted of two LBP features 

and one colour feature, whereas for tussock, it consisted of three LBP 
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Table 7

Bathurst Burr Dataset: Mean IoU for LBP features for various choices of colour 
channel, rotational invariance, number of neighbours, and radius. Feature pa-

rameters are given in format ch-r-nn, where ch is the colour channel or index, 
r is rotational [v]ariant or [i]nvariant, and nn is the number of neighbours. 
The best result for each set of three rows (which corresponds to fixing the 
colour channel and rotational invariance) is in bold, for each column (which 
corresponds to fixing the radius) is underlined, and overall is italicized. Results 
shown are the mean for a 5 ×10 fold cross validation. Results which are not sig-

nificantly different from the best result in the set of three rows (column) are 
labelled with a * (†).

Parameters Radius

1 2 3 4 6 8 10

grey-i-8 63.6† 67.1† 64.2 64.9 65.9† 63.4 61.5

grey-i-16 - 70.7† 70.4 71.6† 72.3*† 69.7† 65.9†

grey-i-24 - - 72.3† 74.2*† 73.8*† 72.5*† 68.1†

grey-v-8 64.8† 70.4*† 70.0 69.4* 66.7† 63.2 61.5

grey-v-16 - 71.7*† 72.2* 70.5*† 64.8 60.2 58.9

grey-v-24 - - 69.6 70.6*† 64.9 61.9 58.7

exg-i-8 70.9*† 69.5*† 68.2* 67.5*† 63.4† 63.6† 64.4†

exg-i-16 - 68.7*† 67.2 67.7† 66.3† 66.5† 66.8†

exg-i-24 - - 67.0 67.5† 66.6† 67.2† 66.4†

exg-v-8 72.3*† 66.8† 64.9 66.4† 62.0 61.0† 61.3†

exg-v-16 - 68.2† 62.0 62.8 60.6 60.1 59.9

exg-v-24 - - 61.8 64.4 60.4 60.3† 59.6

exr-i-8 67.1*† 60.8 62.9 68.4* 64.7 60.6 55.3

exr-i-16 - 62.1 67.9 70.2* 67.6† 66.4† 60.9

exr-i-24 - - 68.8* 72.0*† 68.4† 67.7† 63.1†

exr-v-8 67.2† 65.9 62.7 72.1*† 65.3 61.0 56.5

exr-v-16 - 65.2 67.2 69.9* 67.1† 68.2† 60.0

exr-v-24 - - 65.7 67.3 69.6*† 65.1† 64.7†

xgr-i-8 67.9† 68.7 68.2 71.9 66.3 63.1 57.9

xgr-i-16 - 74.1† 80.2*† 76.8† 73.2 73.4† 69.8

xgr-i-24 - - 81.6*† 78.7† 77.2† 73.0† 72.9†

xgr-v-8 69.4† 72.2 70.1 78.4*† 70.6 66.1 59.4

xgr-v-16 - 76.1† 80.0*† 75.9 72.8 73.4† 69.3

xgr-v-24 - - 79.7* 77.5† 75.4 72.2† 71.5†
Fig. 2. Results for a fusion of features for all datasets. The data-point marked 
with a ‘*’ is the best result for that dataset. Datapoints marked with an ‘o’ 
(‘x’) are (are not) significantly different from the best result for that dataset 
(𝛼 = 0.05). Best result for Bathurst burr was 87.1 ±3.9, for horehound was 79.5 
±4.8, for thistle was 81.6 ±2.1 and for tussock was 87.6 ±1.9.

features, and one HOG feature. Fig. 3 gives example outputs of our 
model. In these images, the feature fusions which produced the best 
results for each dataset have been used. The model was able to segment 
some images very well, but other images posed significant challenges 
due to heavy occlusion (in the case of horehound), or the presence of 
many small weed plants against complex background elements (in the 
7

case of thistle).
Depending on the choice of hyperparameters, feature extraction 
for LBP feature took between 0.266 s and 0.848 s, for HOG fea-

tures between 0.080 s and 0.090 s, and for colour features roughly 
0.367 s. Based on CPU usage, it would appear that the matlab

extractLBPFeatures function does not support parallelization, 
whereas the extractHOGFeatures function does, which could ex-

plain the difference in time taken for these methods. Excluding feature 
extraction, the time taken to process an image by the network and gen-

erate a mask varied depending on the dimensionality of the feature 
used, and the number of hidden layer neurons in the model. Times for 
a model with 100 neurons ranged from 0.001 s to 0.014 s, and for a 
model with 1000 neurons ranged from 0.002 s to 0.015 s. This means 
that the majority of the time was spent on feature extraction. In prin-

ciple, it should be possible to speed up feature extraction through the 
development of a GPU implementation.

5. Discussion

This paper has presented a novel method of using a single hidden 
layer feedforward neural network trained with the ELM algorithm to 
produce a fine-grained segmentation of an image. The method has been 
tested on four datasets of pastoral lands in southeast Australia, and has 
demonstrated good performance, with a best mIOU of 79.5% to 87.6% 
achieved depending on the dataset. The horehound and thistle datasets 
proved to be the most difficult to segment. A likely explanation for 
this is that some plants in the horehound set were heavily occluded 
by other plants, whereas some of the thistle plants were small, and 
difficult to distinguish from the background. LBP features performed 
best for three out of four datasets. This strong performance compared 
to other feature extraction methods is consistent with the findings of 

other studies where multiple features are compared (see for example 
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Table 8

Bathurst Burr Dataset: Mean IoU for HOG features for various 
choices of colour channel, signed orientation and number of 
bins. The best result for each row is in bold, for each column 
is underlined, and overall is italicized. Results shown are the 
mean for a 5 × 10 fold cross validation. Results which are not 
significantly different from the best result in the row (column) 
are labelled with a * (†).

Parameters Number of Bins

4 6 9 12 15

grey-u 58.9*† 58.0*† 57.9*† 56.3† 55.8†

grey-s 53.8 60.0*† 59.8*† 59.2*† 58.2†

exg-u 41.2 46.3* 46.3* 45.6* 45.1*

exg-s 36.5 43.8* 44.3* 44.0* 43.7*

exr-u 42.9 47.6 51.1* 50.8* 50.5*

exr-s 40.0 46.1* 49.1* 50.2* 50.6*

xgr-u 51.6† 57.9*† 59.5*† 59.7*† 59.4*†

xgr-s 47.4 56.4† 59.1*† 59.6*† 59.9*†

Table 9

Horehound Dataset: Mean IoU for LBP features for various choices of colour 
channel, rotational invariance, number of neighbours, and radius. Table has 
been annotated in the same way as Table 7.

Parameters Radius

1 2 3 4 6 8 10

grey-i-8 65.1† 67.0† 68.2† 67.7 66.3 66.4 67.4*

grey-i-16 - 68.5*† 70.4*† 69.1 70.0*† 69.6*† 69.4*†

grey-i-24 - - 70.3*† 70.9*† 70.3*† 69.8*† 69.5*†

grey-v-8 64.9*† 67.7*† 68.4*† 67.7 66.0 66.2 68.0*†

grey-v-16 - 67.9*† 70.4*† 70.1*† 70.8*† 69.2*† 67.9*†

grey-v-24 - - 69.2* 70.6*† 70.1*† 68.5† 66.5

exg-i-8 60.3*† 61.0* 61.5* 61.5* 62.4* 61.8* 59.0*

exg-i-16 - 60.5* 62.3*† 62.6* 61.7* 61.6* 60.6*

exg-i-24 - - 61.6*† 61.3* 61.3* 59.9* 57.6*

exg-v-8 58.3* 60.3* 59.2* 59.0* 60.4* 60.2* 59.5*

exg-v-16 - 56.1* 56.5* 56.7* 55.7* 55.5* 54.0

exg-v-24 - - 56.3* 55.2* 55.8* 55.9* 52.1

exr-i-8 60.2*† 59.6* 58.4* 59.1* 56.9* 55.4* 56.6*

exr-i-16 - 59.3* 59.1* 59.6* 58.1* 56.7* 57.0*

exr-i-24 - - 58.4* 58.1* 56.4* 56.5* 59.9*

exr-v-8 59.5*† 50.5 52.2 53.5 54.9* 54.7* 55.9*

exr-v-16 - 51.7 53.7 53.8 54.7 53.6 53.5

exr-v-24 - - 52.4 52.2 53.6 56.0* 57.5*

xgr-i-8 63.1† 60.2 63.0† 63.0 62.9† 61.1 60.7

xgr-i-16 - 61.5 64.7*† 64.1† 64.7*† 64.5*† 64.2*†

xgr-i-24 - - 64.1† 67.2*† 65.2*† 64.1*† 64.1*†

xgr-v-8 63.5*† 58.7* 59.7* 60.6* 61.1* 60.8* 59.7

xgr-v-16 - 56.1 62.5*† 60.5* 63.3*† 62.1* 60.8*

xgr-v-24 - - 60.7* 63.4*† 62.3*† 62.9*† 60.7*

Table 10

Horehound Dataset: Mean IoU for HOG features for various 
choices of colour channel, signed orientation and number of 
bins. Table has been annotated in the same way as Table 8.

Parameters Number of Bins

4 6 9 12 15

grey-u 48.8*† 49.5* 49.8*† 50.1*† 50.4*†

grey-s 52.8† 56.3*† 55.4*† 54.1*† 53.1*†

exg-u 53.0*† 54.1*† 54.9*† 55.2*† 55.0*†

exg-s 45.2 54.2*† 54.4*† 54.4*† 54.3*†

exr-u 44.9 48.2* 48.2* 48.0*† 49.0*†

exr-s 45.9 49.7*† 49.0* 48.2*† 47.6*†

xgr-u 51.0*† 51.1*† 51.6*† 51.8*† 51.8*†

xgr-s 46.4 54.6*† 53.3*† 52.8*† 52.5†
8
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Table 11

Thistle Dataset: Mean IoU for LBP features for various choices of colour chan-

nel, rotational invariance, number of neighbours, and radius. Table has been 
annotated in the same way as Table 7.

Parameters Radius

1 2 3 4 6 8 10

grey-i-8 66.3 67.8 69.1† 68.7 68.4 68.7 68.6

grey-i-16 - 70.0† 70.5† 71.0 70.9*† 70.1 69.2

grey-i-24 - - 70.7† 71.6*† 71.0*† 70.4† 69.5†

grey-v-8 65.6 66.2 66.3 66.8 67.6 68.3* 68.2*

grey-v-16 - 64.7 64.7 66.1 67.8* 68.0* 67.7

grey-v-24 - - 63.8 65.4 67.3 67.7* 67.4

exg-i-8 71.8*† 71.2*† 70.7† 68.0† 65.2 65.4 64.4

exg-i-16 - 71.1*† 71.0*† 67.9† 66.4 64.8 64.4

exg-i-24 - - 70.8† 68.5† 66.2 65.4 64.1

exg-v-8 71.7*† 70.0 69.1 67.8† 65.8 65.7 64.9

exg-v-16 - 69.3 67.8 66.4 64.5 62.8 62.7

exg-v-24 - - 66.6 64.8 63.0 61.4 60.6

exr-i-8 65.4* 64.1 63.5 65.3* 59.7 59.7 59.4

exr-i-16 - 65.7* 66.3* 65.5* 65.4* 64.0 60.5

exr-i-24 - - 65.9* 66.1* 63.9 63.7 62.2

exr-v-8 68.6* 63.9 62.6 64.9 60.0 61.3 60.6

exr-v-16 - 62.5 63.0 64.2 62.2 60.3 58.4

exr-v-24 - - 62.8 62.4 60.6 59.5 57.9

xgr-i-8 66.5 66.4 67.2 67.7* 61.2 61.6 61.7

xgr-i-16 - 67.5* 68.3*† 67.8* 68.0* 67.6* 64.9

xgr-i-24 - - 67.9† 66.1 67.8* 66.9* 65.3

xgr-v-8 68.5* 66.3 66.5 67.4* 61.3 62.5 61.4

xgr-v-16 - 66.1 65.8 64.4 63.7 63.4 60.6

xgr-v-24 - - 65.2 63.3 63.2 62.4 60.2

Fig. 3. Example outputs of model for (a) Bathurst burr, (b) horehound, (c) thistle and (d) tussock datasets. Polygon annotations drawn by a human annotator are 
shown in red, and regions classified as weed by the model are show in white.
[5,16,14]). Colour features also performed well, being the best feature 
for one dataset, and not significantly different from the best feature for 
another. By comparison, HOG features performed surprisingly poorly 
9

on all datasets tested.
Appropriate optimization of hyperparameters also proved to be im-

portant in designing the feature extractors. For LBP features, the best 
choice of hyperparameters leads to an improvement in mIOU of 4.8% 

to 18.4% over the default choice (we take this to be 𝑟 = 1, 𝑛 = 8, and 
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Table 12

Thistle Dataset: Mean IoU for HOG features for various 
choices of colour channel, signed orientation and number of 
bins. Table has been annotated in the same way as Table 8.

Parameters Number of Bins

4 6 9 12 15

grey-u 46.3* 46.9* 45.5 45.0 44.4

grey-s 53.4† 57.6*† 57.1*† 55.8† 54.9†

exg-u 38.3 51.6 52.5* 52.3* 53.0*†

exg-s 40.7 45.2 50.4* 50.8* 50.3

exr-u 38.5 45.4 50.0 51.1* 50.0

exr-s 47.0 49.7 50.1 50.1 52.3*

xgr-u 41.7 46.2 48.1* 48.6* 48.2

xgr-s 50.3 53.5* 54.9* 54.9*† 54.6*†

Table 13

Tussock dataset: Mean IoU for LBP features for various choices of colour chan-

nel, rotational invariance, number of neighbours, and radius. Table has been 
annotated in the same way as Table 7.

Parameters Radius

1 2 3 4 6 8 10

grey-i-8 75.5 75.6 76.6 78.8 79.6 76.1 70.1

grey-i-16 - 80.0 81.1 83.3*† 83.1*† 81.3† 79.7†

grey-i-24 - - 82.3*† 83.2*† 83.4*† 81.4† 79.9†

grey-v-8 82.4† 83.1*† 82.4* 82.3*† 81.2 77.5 72.9

grey-v-16 - 82.6† 82.0 82.6*† 81.7 80.1† 79.2

grey-v-24 - - 82.6*† 82.0 81.4 79.6 78.7

exg-i-8 76.8 79.7* 78.8 79.6 80.5 79.0 72.3

exg-i-16 - 79.5* 78.4 80.4 81.3* 81.6*† 80.9†

exg-i-24 - - 79.3 80.5 81.4* 80.9 80.6†

exg-v-8 81.3† 83.4*† 83.4*† 82.8† 81.6 79.2 74.4

exg-v-16 - 82.4 81.8 81.7† 81.7 81.1† 80.3†

exg-v-24 - - 80.8 81.1 81.0 80.8† 80.2†

exr-i-8 75.2* 70.9 69.7 69.1 73.8 68.4 60.1

exr-i-16 - 73.9 75.2* 73.7 76.1* 74.5 74.2

exr-i-24 - - 73.0 75.6* 74.7 74.5 73.9

exr-v-8 79.5* 76.3 74.2 74.6 75.9 71.8 63.6

exr-v-16 - 75.9 76.4 77.2 76.1 73.2 71.7

exr-v-24 - - 75.3 75.6 75.0 73.4 71.6

xgr-i-8 75.7 72.6 72.1 75.8 78.3 76.7 70.0

xgr-i-16 - 75.5 76.1 79.8* 78.4 77.0 77.8

xgr-i-24 - - 75.6 78.1 78.2 77.7 75.4

xgr-v-8 81.1*† 79.7 80.1* 81.1* 80.3* 78.3 74.0

xgr-v-16 - 75.4 78.7 79.7* 78.2 77.8 77.4

xgr-v-24 - - 76.9 78.7 77.1 75.4 73.9

Table 14

Tussock Dataset: Mean IoU for HOG features for various 
choices of colour channel, signed orientation and number of 
bins. Table has been annotated in the same way as Table 8.

Parameters Number of Bins

4 6 9 12 15

grey-u 75.4† 75.8*† 75.5† 75.2† 75.1†

grey-s 61.8 75.3* 75.2*† 74.8 74.5

exg-u 68.8 73.0 73.6* 73.2 72.7

exg-s 51.9 71.8 73.4* 73.1 72.6

exr-u 63.1 69.3 71.1 71.6* 71.2*

exr-s 43.4 63.7 67.8 69.7* 69.7*

xgr-u 70.8 73.7 74.5*† 74.4*† 74.1†

xgr-s 51.7 72.1 73.7* 73.4 73.1
grey channel), depending on the dataset. For HOG features, the differ-

ence in results for varying combinations of hyperparameters was not 
so pronounced, with the choice of colour channel being a far more 
important consideration. It was found that the use of 4 bins was al-

most always worse than other choices, except for an unsigned fea-
10

ture extractor working on the grey colour channel. There was often 
no significant difference between other choices of bins (i.e. 6 up to 
15).

It is interesting to note that different colour channels were most 
effective for different datasets, which suggests that, if a multi-class 
segmenter was required, then features may need to be extracted from 

multiple channels/indices to produce acceptable results.
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Table 15

All Datasets: Comparison of best feature for each feature type (colour, 
LBP and HOG). The best result for each dataset is in bold. Results shown 
are the mean ±standard deviation, for a 5 × 10 fold cross validation 
(Bathurst burr, horehound and thistle datasets), or for a set of 10 entirely 
independent train/test splits (tussock). Results which are not signifi-

cantly different from the best result in the column are labelled with a 
†.

Feature Type Dataset

(Best) Bathurst Burr Horehound Thistle Tussock

Colour 79.5±7.7† 70.8±6.5 74.3±3.5† 79.4±4.1

LBP 81.6±7.7† 74.6±5.3† 71.8±3.3 83.4±3.5†

HOG 59.4±6.6 58.8±7.8 57.6±3.6 75.8±2.1

Table 16

All Datasets: order in which the different features were added to the 
feature fusion. At every iteration, the features were added to the ex-

isting fusion, one at a time, and the one which produced the best 
average mIOU was selected. The features are labelled as LBP-𝑟 for LBP 
features, where 𝑟 is the radius, and HOG-𝑛 for HOG features, where 𝑛
is the number of bins. RGB and yCbCr are the two colour features. The 
feature whose addition produced the best result for each dataset is la-

beled with a *, and the feature whose addition produced the smallest 
fusion whose result was not significantly different from the best result 
is labelled with a †. This table should be read as follows: the feature 
fusion for a dataset, consisting of 𝑛 individual features was made up 
of the features given in rows 1, … , 𝑛 in the column for that dataset.

Feature Order Bathurst Burr Horehound Thistle Tussock

1 LBP-3 LBP-4 yCbCr LBP-3

2 yCbCr LBP-10 LBP-4 LBP-1

3 LBP-4 † RGB † LBP-3 † LBP-6

4 HOG-9 LBP-1 LBP-1 HOG-15 †

5 LBP-10 LBP-3 RGB LBP-4

6 RGB LBP-8 LBP-2 LBP-8

7 HOG-6 * HOG-4 LBP-6 * LBP-2

8 HOG-4 yCbCr * LBP-8 HOG-6

9 HOG-12 HOG-9 HOG-4 HOG-4 *

10 LBP-8 HOG-12 HOG-6 HOG-12

11 LBP-6 LBP-2 LBP-10 HOG-9

12 HOG-15 HOG-15 HOG-9 LBP-10

13 LBP-1 HOG-6 HOG-12 yCbCr

14 LBP-2 LBP-6 HOG-15 RGB
6. Conclusion

This work demonstrates the feasibility of using a shallow ANN 
trained by the ELM algorithm, and working on manually extracted fea-

tures, to produce a fine-grained segmentation of agricultural images. 
Future work, however, should determine how attractive this approach 
is compared to other methods, such as the use of CNNs, which are the 
most common choice for segmentation problems.

This study also demonstrated that the choice of colour channel (or 
index) was important, and had a significant impact on the usefulness of 
extracted features, as measured using the mIOU metric. The use of a fea-

ture fusion was an effective method of improving results, resulting in an 
increase of 4.2 - 7.3% compared to the best individual feature, depend-

ing on the dataset considered. Future research could involve testing 
more colour channels/indices, or looking at novel ways of combining 
multiple features into a more effective model.
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