Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58418
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXu, Beibeien
dc.contributor.authorWang, Wenshengen
dc.contributor.authorFalzon, Gregoryen
dc.contributor.authorKwan, Paulen
dc.contributor.authorGuo, Leifengen
dc.contributor.authorSun, Zhiguoen
dc.contributor.authorLi, Chunleien
dc.date.accessioned2024-04-17T23:09:42Z-
dc.date.available2024-04-17T23:09:42Z-
dc.date.issued2020-
dc.identifier.citationInternational Journal of Remote Sensing, 41(21), p. 8121-8142en
dc.identifier.issn1366-5901en
dc.identifier.issn0143-1161en
dc.identifier.urihttps://hdl.handle.net/1959.11/58418-
dc.description.abstract<p>Quadcopters equipped with machine learning vision systems are bound to become an essential technique for precision agriculture applications in pastures in the near future. This paper presents a low-cost approach for livestock counting jointly with classification and semantic segmentation which provide the potential of biometrics and welfare monitoring in animals in real time. The method used in the paper adopts the state-of-the-art deep-learning technique known as Mask R-CNN for feature extraction and training in the images captured by quadcopters. Key parameters such as IoU (Intersection over Union) threshold, the quantity of the training data and the effect the proposed system performs on various densities have been evaluated to optimize the model. A real pasture surveillance dataset is used to evaluate the proposed method and experimental results show that our proposed system can accurately classify the livestock with an accuracy of 96% and estimate the number of cattle and sheep to within 92% of the visual ground truth, presenting competitive advantages of the approach feasible for monitoring the livestock.</p>en
dc.languageenen
dc.publisherTaylor & Francisen
dc.relation.ispartofInternational Journal of Remote Sensingen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleLivestock classification and counting in quadcopter aerial images using Mask R-CNNen
dc.typeJournal Articleen
dc.identifier.doi10.1080/01431161.2020.1734245en
local.contributor.firstnameBeibeien
local.contributor.firstnameWenshengen
local.contributor.firstnameGregoryen
local.contributor.firstnamePaulen
local.contributor.firstnameLeifengen
local.contributor.firstnameZhiguoen
local.contributor.firstnameChunleien
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailbxu4@une.edu.auen
local.profile.emailgfalzon2@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage8121en
local.format.endpage8142en
local.peerreviewedYesen
local.identifier.volume41en
local.identifier.issue21en
local.access.fulltextYesen
local.contributor.lastnameXuen
local.contributor.lastnameWangen
local.contributor.lastnameFalzonen
local.contributor.lastnameKwanen
local.contributor.lastnameGuoen
local.contributor.lastnameSunen
local.contributor.lastnameLien
dc.identifier.staffune-id:bxu4en
dc.identifier.staffune-id:gfalzon2en
dc.identifier.staffune-id:wkwan2en
local.profile.orcid0000-0002-1989-9357en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/58418en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleLivestock classification and counting in quadcopter aerial images using Mask R-CNNen
local.relation.fundingsourcenoteThis research was funded by Beijing Aokemei Technical Service Company Limited and also was supported by Central Public-interest Scientific Institution Basal Research Fund under Grant (JBYWAII-2019-19), Key Research and Development Projects of Jiangxi Province (20192BBF60053), Youth Science Foundation Project of Jiangxi Province (20192ACBL21023) and Inner Mongolia Autonomous Region Science and Technology Major Project (ZD20190039).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorXu, Beibeien
local.search.authorWang, Wenshengen
local.search.authorFalzon, Gregoryen
local.search.authorKwan, Paulen
local.search.authorGuo, Leifengen
local.search.authorSun, Zhiguoen
local.search.authorLi, Chunleien
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/cbc8d63a-7d55-4410-8e92-a46768a577faen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2020en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/cbc8d63a-7d55-4410-8e92-a46768a577faen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/cbc8d63a-7d55-4410-8e92-a46768a577faen
local.subject.for20203002 Agriculture, land and farm managementen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-04-18en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/LivestockFalzonKwan2020JournalArticle.pdfPublished Version3.46 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

67
checked on Jul 6, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons