Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/58418
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xu, Beibei | en |
dc.contributor.author | Wang, Wensheng | en |
dc.contributor.author | Falzon, Gregory | en |
dc.contributor.author | Kwan, Paul | en |
dc.contributor.author | Guo, Leifeng | en |
dc.contributor.author | Sun, Zhiguo | en |
dc.contributor.author | Li, Chunlei | en |
dc.date.accessioned | 2024-04-17T23:09:42Z | - |
dc.date.available | 2024-04-17T23:09:42Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | International Journal of Remote Sensing, 41(21), p. 8121-8142 | en |
dc.identifier.issn | 1366-5901 | en |
dc.identifier.issn | 0143-1161 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/58418 | - |
dc.description.abstract | <p>Quadcopters equipped with machine learning vision systems are bound to become an essential technique for precision agriculture applications in pastures in the near future. This paper presents a low-cost approach for livestock counting jointly with classification and semantic segmentation which provide the potential of biometrics and welfare monitoring in animals in real time. The method used in the paper adopts the state-of-the-art deep-learning technique known as Mask R-CNN for feature extraction and training in the images captured by quadcopters. Key parameters such as IoU (Intersection over Union) threshold, the quantity of the training data and the effect the proposed system performs on various densities have been evaluated to optimize the model. A real pasture surveillance dataset is used to evaluate the proposed method and experimental results show that our proposed system can accurately classify the livestock with an accuracy of 96% and estimate the number of cattle and sheep to within 92% of the visual ground truth, presenting competitive advantages of the approach feasible for monitoring the livestock.</p> | en |
dc.language | en | en |
dc.publisher | Taylor & Francis | en |
dc.relation.ispartof | International Journal of Remote Sensing | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Livestock classification and counting in quadcopter aerial images using Mask R-CNN | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1080/01431161.2020.1734245 | en |
local.contributor.firstname | Beibei | en |
local.contributor.firstname | Wensheng | en |
local.contributor.firstname | Gregory | en |
local.contributor.firstname | Paul | en |
local.contributor.firstname | Leifeng | en |
local.contributor.firstname | Zhiguo | en |
local.contributor.firstname | Chunlei | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | bxu4@une.edu.au | en |
local.profile.email | gfalzon2@une.edu.au | en |
local.profile.email | wkwan2@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 8121 | en |
local.format.endpage | 8142 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 41 | en |
local.identifier.issue | 21 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Xu | en |
local.contributor.lastname | Wang | en |
local.contributor.lastname | Falzon | en |
local.contributor.lastname | Kwan | en |
local.contributor.lastname | Guo | en |
local.contributor.lastname | Sun | en |
local.contributor.lastname | Li | en |
dc.identifier.staff | une-id:bxu4 | en |
dc.identifier.staff | une-id:gfalzon2 | en |
dc.identifier.staff | une-id:wkwan2 | en |
local.profile.orcid | 0000-0002-1989-9357 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/58418 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Livestock classification and counting in quadcopter aerial images using Mask R-CNN | en |
local.relation.fundingsourcenote | This research was funded by Beijing Aokemei Technical Service Company Limited and also was supported by Central Public-interest Scientific Institution Basal Research Fund under Grant (JBYWAII-2019-19), Key Research and Development Projects of Jiangxi Province (20192BBF60053), Youth Science Foundation Project of Jiangxi Province (20192ACBL21023) and Inner Mongolia Autonomous Region Science and Technology Major Project (ZD20190039). | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Xu, Beibei | en |
local.search.author | Wang, Wensheng | en |
local.search.author | Falzon, Gregory | en |
local.search.author | Kwan, Paul | en |
local.search.author | Guo, Leifeng | en |
local.search.author | Sun, Zhiguo | en |
local.search.author | Li, Chunlei | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/cbc8d63a-7d55-4410-8e92-a46768a577fa | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2020 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/cbc8d63a-7d55-4410-8e92-a46768a577fa | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/cbc8d63a-7d55-4410-8e92-a46768a577fa | en |
local.subject.for2020 | 3002 Agriculture, land and farm management | en |
local.subject.seo2020 | tbd | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-04-18 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/LivestockFalzonKwan2020JournalArticle.pdf | Published Version | 3.46 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
67
checked on Jul 6, 2024
This item is licensed under a Creative Commons License