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ABSTRACT
Quadcopters equipped with machine learning vision systems are
bound to become an essential technique for precision agriculture
applications in pastures in the near future. This paper presents
a low-cost approach for livestock counting jointly with classification
and semantic segmentation which provide the potential of bio-
metrics and welfare monitoring in animals in real time. The method
used in the paper adopts the state-of-the-art deep-learning techni-
que known as Mask R-CNN for feature extraction and training in the
images captured by quadcopters. Key parameters such as IoU
(Intersection over Union) threshold, the quantity of the training
data and the effect the proposed system performs on various
densities have been evaluated to optimize the model. A real pasture
surveillance dataset is used to evaluate the proposed method and
experimental results show that our proposed system can accurately
classify the livestock with an accuracy of 96% and estimate the
number of cattle and sheep to within 92% of the visual ground
truth, presenting competitive advantages of the approach feasible
for monitoring the livestock.
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1. Introduction

In order to meet the growing population demand for meat and improve meat quality,
livestock monitoring including behaviours and health has become a hot research topic
among livestock management. The application of information technologies known as the
Internet of things, remote sensing and computer vision are desires for managing the
pasture automatically and intelligently (Ray 2017; O’Grady and O’Hare 2017). Smart
pasture plays an increasingly important role in the construction of precision agriculture
especially in agriculture-developed countries such as Australia and New Zealand which
are scarcely populated countries with vast rangelands but are developing intensive and
large-scale farms (O’Grady and O’Hare 2017). Traditionally, livestock farming is normally
done in a wildlife environment (Qazi et al. 2018) and the challenges including animal’s
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death or loss due to hunting or unintentional factors such as drown in the river or
landslides, and dangerous infectious diseases carried from invasive species, pose great
threats to livestock management. With accurate knowledge of species and quantity of
livestock, the farmers or the farm managers can efficiently monitor the animals to avoid
animals’ loss or invasion by other species causing vandalization of crops such as hares and
wild boars (Priyadharshini et al. 2018). In addition, the farmers or the farm managers need
to consciously control the number of livestock to adapt to the carrying capacity of the
grazed pastures, or the pastures will be overgrazed which leads to soil degradation and
environmental damage (Evju et al. 2006; Oesterheld, Sala, and McNaughton 1992).

The general approach for farmers to get information on numerous livestock is visual
observation which is useful but very costly and time-consuming. For some farms with
advanced technologies, wearable sensors including GPS collars (Bailey et al. 2018), ear
tags (Kumar and Singh 2016) and Radio Frequency Identification (RFID) (Voulodimos
et al. 2010; Ismail and Ariff 2018) are becoming important options for farm manage-
ment which also emphasize on individual wellbeing. Constrained by high costs on
materials and limited transmission scope for network especially in large geographic
ranges and inaccessible habitats, biometrics is only demonstrated on some farmlands
at a range of distances. Other existing monitoring techniques including surveillance
cameras (Gula et al. 2010; Gogoi 2015), thermal cameras (Ward et al. 2016) and camera
traps (Verma and Gupta 2018; Norouzzadeh et al. 2018) typically require considerable
investment in time and resources. In addition, these facilities are expensive to main-
tain and are also limited in the flexibility of ranges and disturbance from surroundings
(Gonzalez et al. 2016). Recent advances in machine vision in agriculture and automa-
tion enable us to obtain huge data about the visual aspects for animals over larger
space and time domain. The availability of economical quadcopters offers a potential
solution to address the above challenges by diminishing cost owing to longer endur-
ance and high repeatability and by performing flight paths autonomously at almost
everywhere (Sa et al. 2016; Gonzalez et al. 2016). As such, quadcopters have been
widely used in animals and wildlife monitoring in recent years such as goat groups
(Qazi et al. 2018), yak (Su et al. 2018), sea turtles (Bevan et al. 2015), birds, large
herbivores and mammal (Linchant et al. 2015). However, extracting useful knowledge
from these quadcopter-based images remains a time-consuming and costly manual
task (Norouzzadeh et al. 2018). Therefore, in addition to the restrictions of quadcopter
regulations, the development of vision system with automatic image processing for
some special tasks is also very important. There is a dire need for visual system to
process images captured by quadcopters to detect and recognize the species accu-
rately and automatically which is a fundamental but crucial step for animals’ popula-
tions as well as behaviours and health monitoring. With subtle changes in illumination,
the colour similarity between animals and background, overlapping among animals
and obstacles like rocks and branches, it is really a challenge to do species identifica-
tion and counting in real-world setting such as pastures. Despite these challenges, the
rapid developments of object detection (He et al. 2017; Ren et al. 2015; Liu et al. 2016;
Redmon et al. 2016) of machine learning in computer vision provide promising
techniques for animal detection and classification.

Studies on animal detection and counting in the scene using convolutional neural
network detector were implemented (Ardo et al. 2017; Ardö et al. 2017; Chamoso et al.
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2014; Guzhva et al. 2018; Shao et al. 2020). However, these researches above just focus on
the single species detection and the experiment is in dairy barn or feedlot. Yu et al. (2013)
improved sparse coding spatial pyramid matching (ScSPM) to recognize 18 animal species
which achieved an average classification accuracy of 82% (Yu et al. 2013). A deep con-
volutional neural network was proposed in (Chen et al. 2014) based species recognition
algorithm for wild animal classification, but the results were unsatisfactory. Cao et al.
(2015) combined convolutional neural network (CNN) with hand-designed images fea-
tures to classify marine animals, yielding better classification results than existing
approaches (Cao et al. 2015). Kumar, Manohar, and Chethan (2015) proposed graph-cut
based technique with K-nearest neighbours classifier for the classification of animals
(Kumar, Manohar, and Chethan 2015). Gomez Villa, Salazar, and Vargas (2017) and
Nguyen et al. (2017) both also adopted the deep neural networks using Snapshot
Serengeti (SSe) dataset and Wildlife Spotter project dataset, respectively, but the former
did improvements in data processing to identify animal species (Gomez Villa, Salazar, and
Vargas 2017; Nguyen et al. 2017). The former results showed it outperformed other
previous approaches for the most common 26 species and the latter achieved 90.4%
accuracy for identifying the three most common species. Norouzzadeh et al. (2018)
trained the deep convolutional neural networks using 3.2 million images of Serengeti
wildlife and then automatically classified 48 species with 95% accuracy (Norouzzadeh
et al. 2018). More recently, Tabak et al. (2019) used convolutional neural networks with the
ResNet-18 architecture to automatically classify wildlife species (Tabak et al. 2019). The
model achieved 98% accuracy within the sample dataset and out-of-sample also correctly
identified at least 82% of images containing an animal.

Despite these advances in animal classification, the scenarios examined above
were in the wild and only single animal exists in per image. Pastures, the most
common cases of livestock breeding, are different from the wild. The animals in the
pastures are likely to be tightly packed herds. Visual clutter (vegetation and other
natural elements) and strong lighting contrast and shadows (from farm infrastruc-
ture) should also be considered. Therefore, in this paper, our aim is to take the first
step towards livestock monitoring vision system applying in actual scenario. This
paper will present a state-of-art object detection framework, Mask R-CNN algorithm,
on livestock dataset for effective classification and counting which can work well in
quadcopter system. Mask R-CNN performs not only on object detection and classifi-
cation but also on instance segmentation (associating specific image pixels to the
detected object). The benefits provided by instance segmentation allow for diverse
future applications including estimation of animal pose and direction of travel to
monitor abnormal behaviours.

In the previous researches, Mask R-CNN was used to explore road damage classification
(Singh and Shekhar 2018), classification of magnetic resonance images of the knee
(Couteaux et al. 2019) and identification of whale species as well as length measurement
of whale individuals (Gray et al. 2019). Mask R-CNN has been demonstrated the availability
of pixel-level instance segmentation applying in counting cattle with stronger robustness
(Danish 2018). We also evaluated the algorithm in different cases using full-appearance
detection and head detection and achieved good performance (Xu et al. 2019). However,
there are many other factors which will influence the accuracy of classification and
counting including the number of species, the quantity of training data and the density
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of animals in the pasture. As a result, this paper will examine the effect of different
densities and various number of training set on classification and counting of species to
optimize the proposed model (Smith 1989).

2. Materials and methods

2.1. Data collection and processing

A publicly available dataset from real pasture scenario consisting of at least two livestock
species which meets the requirements in the paper has not been produced to date due to
the expensive and time-consuming nature of image annotation. The publicly available
datasets like FriesianCattle dataset in the paper (Andrew 2017) are from the very specific
but controversial scenarios, which was one of the less challenging computer vision
scenarios for object detection and localization consisting of cattle with distinctive black
and white coat patterns contrast with lush green pastures. The dataset used in the paper
was collected from a private farmland in Armidale in Australia. The observation videos of
10 flight campaigns for livestock were recorded by the MAVIC PRO drone from April to
October. The drone is equipped with an integrated Pan-Tilt- Zoom (PTZ) camera shown in
Figure 1. The camera has a 2.3−1-inch CMOS image sensor that can rotate flexibly in the
lateral and vertical. The video data captured by this stabilized camera are a frame resolu-
tion 4096 × 2160 pixels and 30 Frames Per second (FPS). Figure 2 is showing the frame
examples of cattle and sheep in the pasture.

Considering avoiding fractions when downscaling and upscaling in the convolutional
neural network, the input image size used in this method must be divisible by 2 at least 6
times. In addition, the size of the input images is limited by computational capabilities and
memory of computer system, so the frame images for dataset extracted from videos in our
cases are clipped automatically using MATLAB to the size of 512 × 512 pixels. The dataset
consists of 1000 images with 3737 livestock in total, of which 80% are used for training

Figure 1. MAVIC PRO drone.
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and the rest for testing (validation dataset is not used in the research). Details of training
and testing dataset are given in Table 1. The ground truth annotation for training dataset
is done by the image annotation tool, LabelMe (Russell et al. 2008). Each cow and sheep
are clicked along the outside edge with points until connected into a closed loop in the
images and the label name also needs to be marked (see Figure 3). Then, the ground truth
data are stored in a table format aligned with that required by the Mask-RCNN framework
for data annotation.

2.2. Proposed system overview

In this section, the proposed livestock classification and counting system based on
machine learning is illustrated in detail. Figure 4 is presenting the working block
diagram for the proposed system. For the manifestation of detection and classification
of livestock (sheep and cattle) in the vast pasture, the drone is used for continuous
acquisition of livestock data from the captured videos in the proposed system. Further,
this system extracts the video frames and performs segmentation on them. The images

Figure 2. (a) and (c) are example frames of sheep and (b) and (d) are example frames of cattle.

Table 1. (a) Details of training images. (b) Details of testing
images.

Number of images Number of objects

Cattle 400 1392
Sheep 400 1533
Cattle 100 600
Sheep 100 592
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of 512 × 512 pixels cropped and resized from previous segmentation are used for
training and testing, respectively. For training the machine learning model, livestock
features are extracted from training dataset based on the annotations and then are
classified and regressed simultaneously in a multitasking way. The output is the classi-
fication for livestock with pixel-level segmentation with localization through many
repeated trainings of parameters optimization for the model. The machine learning
detector for classification and counting is formed after optimizing some key parameters
for the training model. When running the detector with testing dataset, we could get
the instance segmentation, localization, classification and confidence scores for live-
stock and classification for sheep and cattle.

Figure 3. (a) and (b) are examples of annotations for cattle and sheep using LabelMe.

Figure 4. Flowchart of the livestock classification and counting based on machine learning.

8126 B. XU ET AL.



2.3. Machine learning network

The machine learning detector in the proposed system employs Mask R-CNN algorithm
for livestock classification and counting. Mask R-CNN is an object detection framework
with instance segmentation. It is an extension of Faster R-CNN, which is added a mask
prediction branch composed of a Fully Convolutional Network for segmenting each
Region of Interest (RoI). The RoI Pooling in Faster R-CNN is also replaced with RoIAlign
for Mask R-CNN using the bilinear interpolation to remove the harsh quantization of RoI
Pooling, properly aligning the extracted features with the input to improve the accuracy
of predicting pixel-level masks (He et al. 2017). Figure 5 illustrates the architecture of Mask
R-CNN network for livestock classification and counting.

Specifically, the network of Mask R-CNN applied in this research is composed of three
functional modules: (i) the convolutional backbone architecture used for feature extrac-
tion over an entire image, and (ii) the network head for bounding-box recognition
(classification and regression) and (iii) mask prediction that is applied separately to each
RoI (He et al. 2017).

(i) Feature Extraction: The procedure starts with inputting a three-channel image (RGB
image) into a pre-trained convolutional network. But due to computational constraints,
the image is constrained to 512 × 512 dimensions. For feature extractor, the ResNet-
101 performs better than others in terms of accuracy and speed including VGG16,
AlexNet, and Inception and so on (He et al. 2016, 2017; Huang et al. 2017; LeCun,
Bengio, and Hinton 2015). Compared with VGG16, AlexNet, Inception (He et al. 2017,
2015; Huang et al. 2016), ResNet-101 achieves competitive performance in scale-invariant
feature extraction (He et al. 2017). So, the pretrained ResNet-101 using COCO dataset (Lin
et al. 2014) is employed as a backbone network to extract features for Mask R-CNN. The
101 layers of ResNet are mainly constructed by six parts: conv1, conv2_x, conv3_x,
conv4_x, and conv5_x which consist of three-layer blocks (conv1 excluded).

(ii) Region Proposal Network (RPN): On the feature maps from the last shared convolu-
tional layer, sliding window method is conducted to obtain the feature vector at each
location of the feature map. RPN, a newly high-sufficient proposal generation network in
the Faster R-CNN, is used to propose Region of Interests (RoIs) based on the feature vector.
It replaces the selective search method in the previous RCNN and Fast RCNN. For every
minimum unit point on the feature map of last convolutional layer in conv4_x, fifteen
anchors can be generated in different size (128 × 128, 64 × 64, 32 × 32, 16 × 16, 8 × 8) of
different ratios (0.5, 1, 2) and thereby multiple ROIs are produced. All the ROIs are fed into
RPN to perform binary classification (foreground or background) and preliminary
Bounding-box regression to filter out some candidate ROIs using Non-maximum

Figure 5. Architecture of the Mask R-CNN network for livestock classification and counting.
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suppression. The RoiAlign then operates on the above proposed regions of different sizes,
which are mapped precisely to generate fixed-size feature maps equal to the size of the
convolutional network input. The ROI of 16 × 16 on the feature map with a stride
substitutes for 32 × 32 with a stride of 2 in the conv5_x according to (He et al. 2015).

(iii) The head architecture for bounding-box recognition (classification and regression) and
mask prediction: The RoIAlign layer selects the features corresponding to each RoI on the
feature map, and sends them to the fully connected layer for classification prediction, mask
prediction and bounding-box predictionwhich typically use a per-pixel Softmax loss (He et al.
2015)and average binary cross-entropy loss. The average pooling layer following the conv5_x
is used for 2048-dimensional features to classify and regress the bounding-boxes through the
fully connected layer with softmax. Additionally, the end-to-end Fully Convolutional Network
carries out convolution and deconvolution successively to achieve accurate mask
segmentation.

3. Results

3.1. Implementation details

Experiments are performed on the dataset that includes training dataset of two annotated
categories and testing dataset on which the evaluation is done. Transfer learning is used in
this study for training which means that the parameters of the learned and trained model
on a similar task are transferred and fine-tuned to a new model for the required target task
(Karri, Chakraborty, and Chatterjee 2017; Zhu et al. 2011; Pan and Yang 2010). Specifically,
the network used in the proposed algorithm was initialized by the pre-trained Resnet101
with bounding box annotations. To avoid destroying the parameters learned of convolu-
tional layers during pre-training, only the network head is trained independently for the
first stage in training using the training dataset of 800 images while all the backbone layers
remain fixed. Then, we conduct our training dataset to fine-tune the global layers to form
the Mask R-CNN-based livestock counting detector which could take advantage of the
generalized features from large-scale data. The network is trained using the Stochastic
Gradient Descent (SGD) algorithm with a weight decay of 0.001 and a momentum of 0.9
and the initial learning rate is 0.01. All the training experiments have a batch size of 10
images and the epochs is 1000. The proposed system has been implemented using the
deep learning framework and visual component libraries including TensorFlow, Keras and
Matplotlib with an Intel core i7 2.4 GHz Processor running on CPU in a 64-bit version of
Windows 10 laptop with 16GB of RAM. It takes about 3 min for per epoch on the machine.
The livestock in the pastures are separate and rarely mixed together, so only cattle or sheep
in each image of the dataset whose details are previously shown in Table 1. The following
results of this proposed system are tested over 200 randomly chosen images, half contain-
ing cattle and half sheep. The resultant loss curve of training is shown in Figure 6 which
demonstrates that the proposed system achieves the error rate at 0.2–0.3.

3.2. Evaluation protocol

The performance evaluation for the proposed system is based on IoU which is
defined as a measure of similarity between the bounding boxes for predicted
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objects and ground truth. True positive, TP, is considered if the value of IoU
outperforms a certain threshold ranging from 0 to 1, and false positive, FP other-
wise. For evaluating the accuracy of the livestock classification and counting, we
utilize the precision, recall, F1 score, confusion matrix and mean average precision
(mAP) as the evaluation metrics in this paper. The precision reflects the proportion
of true predicted positive in all the predicted positive while the recall reflects the
proportion of true predicted positive in all the true positives. Recall is computed as
the fraction of ground truth objects covered above an IoU threshold. F1 score is
a statistical measure which is defined as the harmonic average between precision
and recall, where it achieves the best performance at the best IoU threshold.
Confusion matrix is a table with two dimensions of predicted class and true classes
to do more detailed analysis than be limited to the true classification accuracy. The
mAP is the average precision of all classes in the livestock and the AP is the value
of area enclosed by the precision-recall curve at different IoU threshold that is
introduced in the Pascal VOC Challenge. To evaluate the counting and classification
of results in the work, we compare the detected results using the proposed
approach with the ground truth. The classification accuracy and counting accuracy
follow Equation (1) and (2):

A %ð Þ ¼ ð1� d � gj j
g

Þ � 100% (1)

B %ð Þ ¼ c
g
� A� 100% (2)

Figure 6. Training loss curve of the proposed system.
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Here, A is the counting accuracy and B is the conditional classification accuracy. A can be
calculated via the detected counting (d) and ground truth (g) and B calculates the
probability of correct classification (c) in the condition of correct detection.

3.3. Selection of iou thresholds for the proposed system

Most of the output proposals generated from RPN are duplicates and thus need to be
filtered out. The quality of bounding box proposals for cattle or sheep in images is
typically evaluated by IoU score which measures the union area of box proposal and
ground-truth box. Only high scoring proposals are selected to the RoIAlign layer. The
threshold of IoU from 0.4 to 0.7 is used to indicate successful detection in many cases (for
example, 0.5 in PASCAL VOC challenge) (Kuo, Hariharan, and Malik 2015; Ghodrati et al.
2015). The performance of the network for detecting cattle or sheep will be poor if the
threshold is not set appropriately which means overlapping bounding-box predictions for
higher threshold and missing objects for lower threshold. However, the threshold may
vary for different dataset, in this section, we evaluate the performance over varying IoU
thresholds to decide the optimal value for the proposed system.

The precision, recall and F1 scores are utilized to compare the performance of
different IoU thresholds shown in Figure 7. The green solid lines are the overall precision
rate and recall rate for livestock in Figure 7(a). The higher the threshold is, the lower the
recall that is considered to be true object rate, and the higher the precision that is
considered to be object detection accuracy. At about IoU = 0.4, the precision and the
recall achieve the same value considered as a balance point. Both precision and recall
can get best performance because the predicted objects are the true objects. As can be
seen in Figure 7(b), the F1 score for the overall livestock achieves the highest value at
about IoU = 0.4 with a precision rate of 0.955 and a recall rate of 0.952, which is
consistent with the previous results. Compared the precisions, recalls an F1 scores of
cattle and sheep, respectively, under different IoU thresholds in Figure 7, similar trends
are with the overall livestock and the performance of the threshold at around 0.4 is
significantly better than others. Furthermore, the sheep detection outperforms the
cattle.

3.4. Impact of number of images on livestock classification and counting

Typically, large amounts of data are essential for training the deep learning model in order
to avoid overfitting. Since there are many parameters in deep neural networks, so if there
is not enough data for training them, they tend to remember the entire training set, which
will result in good training, but bad performance on testing set. Therefore, we evaluate
the performance of different number of data sets (200,400,600,800 and 1000, respectively)
using the training loss curve and precision-recall metric.

Figures 8 and 9 explore the trade-off between the performances measured with
training loss, precision and recall rate on the testing set and the quantity of training
images. For fair of comparison, the number of epochs for training are set to be 1000 for all
the cases and the overlap threshold is set to be 0.4 we tested in last section. Results in
Figure 8 present a consistent trend across the curves of different number of training
images which indicates that the training loss drops rapidly with the increase of the epochs
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and then decrease at a slow rate after about 200 epochs, and finally tend to be stable at
around 900 epochs. However, the number of 1000 and 200 images seem to outperform
than others considering the values of loss and the stability of network convergence
during training.

Figure 7. (a) is precision and recall as a function of IoU threshold and (b) is F1 scores as a function of
IoU threshold.

INTERNATIONAL JOURNAL OF REMOTE SENSING 8131



Figure 9 reflects the overall quality of the results for a given number of images. When
inspecting Figure 9 from fewer images to more images, one notices that the proposed
system outputs low precision on testing set with only 200 training images compared with
other more training images. Furthermore, results show that the proposed system achieves
both high and stable recall as well as precision across almost the whole range of the number
of training images (except number 200). Therefore, we have a reasonably consistent quality
& quantity trade-off considering both the training loss and precision and recall of testing set.

In terms of the computation cost and detection accuracy, when 1000 images are
adopted for training model with 1000 epochs, we obtain a good quantity & quality trade-
off whose recall and precision are higher than 90%, which shows that the proposed
system is effective for livestock classification of high quality. On the contrary, although

Figure 8. Training loss curves of different number images for the proposed system.

Figure 9. Recall and precision versus different number of training images at IoU threshold of 0.5.
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equally low in training loss with the former, the training model of 200 images doesn’t
produce good performance. The reason is that the limited data couldn’t train the com-
plicated networks of many parameters and feature dimensions very well, so the training
model is overfitting without considering the generalization ability.

3.5. Results of livestock classification and counting

The performance evaluation of livestock classification and counting follows the same
training and testing settings described in Section 2.2 and Section 3.1, and the IoU
threshold is set as 0.4. Even though the precision and the recall as a function of IoU
thresholds, respectively, are previously presented in Section 3.3, we need to combine
these two metrics to evaluate the performance of livestock classification. Figure 10 shows
the precision-recall curves over varying IoU thresholds. It can be observed that the
performance of the detection of sheep is better than cattle which is consistent with
the conclusion in Section 3.3. The higher the precision and the recall are, the better the
performance of livestock classification is, therefore, inflection points at curves are chosen
known as balance points where they could achieve the optimal values. The best precision
rate is 0.955, 0.960 and 0.950 for livestock, sheep and cattle at IoU threshold = 0.4 while
the best recall is 0.952, 0.950 and 0.954.

Figure 10. Precision-recall curves of livestock classification.

Table 2. Confusion matrix of the livestock classification results.
True

prediction Cattle Sheep Non-livestock

Cattle 573 6 53
Sheep 0 569 39
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In order to visually evaluate the performance of the classifier, the confusion matrix
of the testing results is presented in Table 2. Notice that the classification error of
cattle mistaken for sheep and non-livestock mistaken for cattle are bit higher than
the sheep mistaken for cattle or non-livestock mistaken for sheep which indicates the
accuracy of sheep detection is higher than the cattle on testing dataset. The detailed
results of livestock classification and counting is shown in Table 3. As observed, the
proposed approach yields an accuracy of 96.0% for livestock counting and 92.0% for
classification. However, the results considering the counting and classification accu-
racy for sheep (97.3% and 93.5%) are both precisely than the cattle (94.7%
and 90.4%).

We further demonstrate the classification results for each image in testing dataset in
Figure 11(a). The image index from 1 to 20 is with more livestock, than the index ranging
(21 ~ 40) and (60 ~ 80) which is also more than the rest. The classification accuracy is
mainly between 50% and 100% and the accuracy changes a lot with different image index
especially for cattle. In the meanwhile, we also compute the counting accuracy of 200
images whose values are also mainly between 50% and 100% shown in Figure 11(b). It can
be inferred from above analyses that either the classification or counting, the sheep
performs better than cattle because of the complexity of the environment for cattle and
various postures of cattle which is difficult to distinguish from other obstructions, such as
trees and rocks in the pastures.

We note that the discrepancy of accuracy in Figure 11 may suffer from the density of
livestock in images. Specifically, the higher accuracy occurs when the livestock is dense in
contrast with images consisting of sparse objects. In Table 4, we show how the proposed
system performs on different range of livestock in images. For both cattle and sheep, we
regard the number of ground truth below 4 as low density, larger than 10 (included) as
high and middle otherwise. The performance results of above every case are obtained
from 20 images of each testing dataset for cattle and sheep, respectively. The comparative
results show that the classification and counting for sheep and cattle keep the similar
trend with the density changing. With the density increasing, although the missed
counting increase, the livestock classification and counting accuracy also improve gradu-
ally. The reason can be attributed to the small percentage of the misidentified accounting
for the total number of livestock. Due to limited testing data, there is no consistent
conclusion on the classification and counting that which livestock is better over varying
density. However, the performance of high density of cattle and sheep illustrates the
advantage of the proposed approach over the occlusion between livestock which can
effectively detect the class and location of cattle and sheep. The instances of livestock
classification with different density is presented throughout Figure 12.

Table 3. Livestock classification and counting results.
No. in reference

data set
No. livestock
detected

No. correct
identification

No.
missed

Counting accu-
racy (%)

Classification accu-
racy (%)

Cattle 600 632 573 18 94.7 90.4
Sheep 592 608 569 23 97.3 93.5
Total 1192 1240 1142 41 96.0 92.0
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4. Discussion

This paper has presented a novel vision-based statistical and recognition approach that
takes advantage of machine learning to automate the identification process of livestock

Figure 11. (a) and (b) are the classification accuracy and counting accuracy of 200 images,
respectively.

Table 4. Performance comparisons of different density.

Range of in reference
data set

No. in reference
data set

No.
detected

No. correct No. missed Counting
accuracy (%)

Classification
accuracy (%)Cattle Sheep Cattle Sheep

Low (<4) Cattle 38 43 35 – 2 – 86.8 79.9
Sheep 44 55 – 43 – 0 75 73.3

Middle (<10) Cattle 113 120 106 – 4 – 93.8 88.0
Sheep 107 111 – 104 – 3 96.3 93.6

High (≥10) Cattle 292 289 278 – 11 – 99.0 94.3
Sheep 286 282 – 273 – 15 98.6 94.1
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for the quadcopter vision system in the farmland. The key novelty of the study is the
application of the Mask R-CNN algorithm and the demonstration of its effectiveness for
this important livestock monitoring task. The essence of the livestock classification in this
paper is object-based segmentation and classification with confidence and mask, that is,
the result is whether it is cattle or sheep. Previous studies have demonstrated the demand
for quadcopters and real-time remote sensing capability of quadcopters to rapidly record
livestock (Rahnemoonfar, Foster, and Starek 2017), but the existing research in single
animal species counting suffer from the deviation of bounding-box and the challenge for
mask detection (Alberto et al. 2017). A major advantage of the Mask R-CNN approach is
the ability to perform both detection and classification as well as instance segmentation
of livestock within the imagery, this allows the development of further algorithms to
perform tasks such as welfare monitoring from the imagery. Specifically, Mask R-CNN can
also be used for key point detection (He et al. 2017), which can be used for real-time
detection of behaviours of the animals to provide early warning for diseases like oestruses
(Dolecheck et al. 2015; Tian et al. 2013). Livestock instance segmentation in the paper is
the first step towards real-time animal monitoring in farming environments that have
different applications, such as early lameness detection (Viazzi et al. 2012) and other
animal welfare improvements.

Owing to the relatively low-flying altitudes and high-resolution imaging, the quadcop-
ter presents the potential capabilities of quick monitoring of large areas and detailed
aerial imagery of livestock (Windrim et al. 2019) to manage the livestock, providing the
benefits of low cost, time efficiency and convenient operation. The aim is to build an

Figure 12. (a), (b) and (c) are sample detection results on the cattle dataset. (d), (e) and (f) are sample
detection results on the sheep dataset.
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accurate, fast and reliable livestock classification system, which plays a vital part in an
autonomous robotic system for livestock management (Van Hertem et al. 2018); it is a key
element for automated livestock monitoring such as the individual behaviour activities,
housing welfare and grazing estimation of grassland (Nasirahmadi, Edwards, and Sturm
2017; Nir et al. 2018). In this study, Mask R-CNN deep learning network is adopted which
we modify and fine-tune on our own training data to detect and classify cattle and sheep.
The multi-class classification approach achieves an accuracy above 92% without the need
of any pre-processing steps such as data augmentation. It is worth repeating that while
validation data is not used in this study due to limited labelled data. The validation data of
machine learning is used to help supervise the model for overfitting and adjust para-
meters. As a replacement for the validation set, this study uses TensorBoard provided by
TensorFlow for visualizing the training process and repeatedly readjusts the parameters
manually for optimizing the model. The study reports evaluation metrics of test data
based on the optimal model for the task of livestock detection and classification.

In previous experiments for the application of cattle instance segmentation, cell
nucleus segmentation and pose estimation using Mask R-CNN (Danish 2018; Ter-
Sarkisov et al. 2018; Johnson 2018; Chen et al. 2018), we find that the IoU threshold
changes a lot under a variety of conditions ranging from 0.5 to 0.7. Therefore, we compute
the precision, recall and F1 score for each IoU from 0.1 to 0.9, among which the IoU of 0.4
leads to a good detector for livestock classification, to optimize the parameters for the
model. Although the optimal threshold is not same with that in our previous research
(0.5), it confirms the conclusion that this IoU threshold of object detection framework
should be properly adjusted depending on the circumstances and applications.

The number of training images is also an important parameter which directly affects the
quality of training model and, hence, indirectly decides on the final object detection and
classification performance. The extensive evaluation enables researchers to make more
informed decisions when considering on the quantity of training data. The number of
1000 are found to provide the best compromise regarding the training loss versus testing
quality in the proposed approach. This is mainly because the dataset is collected in the
relatively simple environment without too much interference, and the feature difference
between a herd of cattle or sheep flock in the same region is not obvious. However, it is
unlikely that others could achieve the same results in a more heterogeneous environment,
especially since the sheep and cattle stand out so much more than animals that are more
similar in colour or texture to their environment. In the future work, we will enlarge the
dataset under complex scenes to further demonstrate the generalization of this approach.

We also investigate how the proposed system performs on images of varying density.
The proposed approach is experimentally shown that it tends to overestimate the
classification in cases of images with more than 10 cattle or sheep per image but under-
estimate below 10. This estimation error could possibly be a consequence of the insuffi-
cient number of training images with such large crowds in the dataset. Moreover, the
detection of sheep outperforms cattle due to diverse postures which indicates that there
is still huge space for adopting heterogeneous visual feature integration to further
boosting the object detection performance by designing more powerful feature
representations.
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5. Conclusions

This paper addresses the challenge of automated livestock detection and classification in
quadcopter imagery by describing a system that combines a quadcopter and artificial
intelligence image processing for aerial survey. This technique would be especially useful
in vast and inaccessible rugged terrain. The proposed system could process the images
captured in-place by quadcopters rather than manual observation which is challenging and
time-consuming or the sensors with limited transmission distance. It provides a practical
and applicable solution for detection and instance segmentation of livestock within the
imagery, which in fact represents a comparable trend with other approaches for livestock
monitoring. The proposed machine-learning-based quadcopter vision system has proven to
be effective at livestock recognition and counting in a convenient and timely fashion that
can perform up to with an accuracy of 96% for livestock classification and 92% for livestock
counting. The goal of the work is to build the more appropriate quadcopter vision system
for our task. Therefore, the experimental results and comparisons over different IoU thresh-
olds as well as the impact on number of training dataset demonstrate how the proposed
system is able to effectively recognize two different categories of livestock.

The proposed system is expected to make a significant contribution to the
agriculture research area especially for the balance between carrying capacity and
the stocking rate of the grassland (Pádua et al. 2017). Future works will involve the
integration of the proposed algorithm with a quadcopter and improve the current
accuracy. The NVIDIA GPU (Graphics Processing Unit) device is also required to
improve the processing time if we deploy the system into the quadcopter system.
A promising quadcopter vision system could be extended to protect the crops
against animal intrusion (Priyadharshini et al. 2018) and for animal search or rescue
remote sensing in agricultural environments. Furthermore, the multispectral cameras
will be deployed on quadcopters for land cover and vegetation mapping applications
to help assess the grazing capacity of pastures (Ahmed et al. 2017; Marcial-Pablo
et al. 2019; Yang and Everitt 2010).
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