Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58248
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLuo, Zhongkuien
dc.contributor.authorEady, Sandraen
dc.contributor.authorSharma, Bharaten
dc.contributor.authorGrant, Timothyen
dc.contributor.authorLiu, De Lien
dc.contributor.authorCowie, Annetteen
dc.contributor.authorFarquharson, Ryanen
dc.contributor.authorSimmons, Aaronen
dc.contributor.authorCrawford, Debbieen
dc.contributor.authorSearle, Rossen
dc.contributor.authorMoor, Andrewen
dc.date.accessioned2024-04-10T05:24:56Z-
dc.date.available2024-04-10T05:24:56Z-
dc.date.issued2019-03-01-
dc.identifier.citationGeoderma, v.337, p. 311-321en
dc.identifier.issn1872-6259en
dc.identifier.issn0016-7061en
dc.identifier.urihttps://hdl.handle.net/1959.11/58248-
dc.description.abstract<p>Soil organic carbon (SOC) in agricultural soils is vital for soil fertility for sustainable agricultural production and climate change resilience. Process-based farming system models are widely used to predict SOC dynamics in agricultural soils, but their application at regional scales is largely limited by computational requirements, data availability, and uncertainties in model predictions. Here we present an approach of combining a farming system model and a simplified surrogate model that emulates and mimics the behaviour of complex process-based models to predict SOC change (<i>ΔSOC</i>) and its uncertainty in Australian dryland cropping regions under anticipated climate change. We first calibrated and validated the farming system model APSIM for simulating <i>ΔSOC</i> (0–30 cm soil) using data from 90 farming-system trials at 28 sites across the study regions. Next we conducted a comprehensive simulation across the region using the validated APSIM model to predict <i>ΔSOC</i> over the period 2009–2070. Then simple surrogate models were developed based on the APSIM outputs. The surrogate models were able to explain > 96% of the variation in APSIM-predicted <i>ΔSOC</i>. Last the surrogate models were applied across the regions at the resolution of 1 km. In our simulations, Australian dryland cropping soils under farmers' common management practices and future climate conditions were a net carbon source (0.66 Mg C ha<sup>−1</sup> with the 95% confidence interval ranging from −5.79 to 8.38 Mg C ha<sup>−1</sup> ) during the 62-year period. Across the regions, simulated <i>ΔSOC</i> exhibited great spatial variability ranging from −108.8 to 9.89 Mg C ha<sup>−1</sup> at the resolution of 1 km, showing significant (<i>P</i> < 0.05) negative correlation with baseline SOC level, temperature and rainfall, and positive correlation with pasture frequency (the duration of pasture in the rotation divided by the whole duration of the rotation) and nitrogen application rate. The uncertainty in <i>ΔSOC</i> and the underlying drivers were also assessed. This study presented a novel approach to efficiently predict future SOC dynamics and their uncertainty at fine resolutions, facilitating the development of site-specific management strategies for soil carbon sequestration.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofGeodermaen
dc.titleMapping future soil carbon change and its uncertainty in croplands using simple surrogates of a complex farming system modelen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.geoderma.2018.09.041en
dc.subject.keywordsUpscalingen
dc.subject.keywordsCropping systemen
dc.subject.keywordsClimate changeen
dc.subject.keywordsUncertaintyen
dc.subject.keywordsSoil Scienceen
dc.subject.keywordsAgricultureen
dc.subject.keywordsAgricultural soilen
dc.subject.keywordsCarbon sequestrationen
local.contributor.firstnameZhongkuien
local.contributor.firstnameSandraen
local.contributor.firstnameBharaten
local.contributor.firstnameTimothyen
local.contributor.firstnameDe Lien
local.contributor.firstnameAnnetteen
local.contributor.firstnameRyanen
local.contributor.firstnameAaronen
local.contributor.firstnameDebbieen
local.contributor.firstnameRossen
local.contributor.firstnameAndrewen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolUNE Business Schoolen
local.profile.emaildliu@une.edu.auen
local.profile.emailacowie4@une.edu.auen
local.profile.emailasimmo31@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage311en
local.format.endpage321en
local.peerreviewedYesen
local.identifier.volume337en
local.contributor.lastnameLuoen
local.contributor.lastnameEadyen
local.contributor.lastnameSharmaen
local.contributor.lastnameGranten
local.contributor.lastnameLiuen
local.contributor.lastnameCowieen
local.contributor.lastnameFarquharsonen
local.contributor.lastnameSimmonsen
local.contributor.lastnameCrawforden
local.contributor.lastnameSearleen
local.contributor.lastnameMooren
dc.identifier.staffune-id:dliuen
dc.identifier.staffune-id:acowie4en
dc.identifier.staffune-id:asimmo31en
local.profile.orcid0000-0002-3638-4945en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/58248en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleMapping future soil carbon change and its uncertainty in croplands using simple surrogates of a complex farming system modelen
local.relation.fundingsourcenoteThis study was financially supported by the Grains Research & Development Corporation.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLuo, Zhongkuien
local.search.authorEady, Sandraen
local.search.authorSharma, Bharaten
local.search.authorGrant, Timothyen
local.search.authorLiu, De Lien
local.search.authorCowie, Annetteen
local.search.authorFarquharson, Ryanen
local.search.authorSimmons, Aaronen
local.search.authorCrawford, Debbieen
local.search.authorSearle, Rossen
local.search.authorMoor, Andrewen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2019en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/33bbc370-5a34-438c-a152-03baec212216en
local.subject.for20204101 Climate change impacts and adaptationen
local.subject.seo2020TBDen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Environmental and Rural Science
UNE Business School
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

25
checked on Jan 4, 2025

Page view(s)

268
checked on Jan 5, 2025

Download(s)

4
checked on Jan 5, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.