Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/58220
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aeberli, Aaron | en |
dc.contributor.author | Robson, Andrew | en |
dc.contributor.author | Phinn, Stuart | en |
dc.contributor.author | Lamb, David W | en |
dc.contributor.author | Johansen, Kasper | en |
dc.date.accessioned | 2024-04-09T05:56:36Z | - |
dc.date.available | 2024-04-09T05:56:36Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Remote Sensing, 14(21), p. 1-18 | en |
dc.identifier.issn | 2072-4292 | en |
dc.identifier.issn | 2315-4675 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/58220 | - |
dc.description.abstract | <p>This research investigates the capability of field-based spectroscopy (350–2500 nm) for discriminating banana plants (Cavendish subgroup Williams) infested with spider mites from those unaffected. Spider mites are considered a major threat to agricultural production, as they occur on over 1000 plant species, including banana plant varieties. Plants were grown under a controlled glasshouse environment to remove any influence other than the imposed treatment (presence or absence of spider mites). The spectroradiometer measurements were undertaken with a leaf clip over three infestation events. From the resultant spectral data, various classification models were evaluated including partial least squares discriminant analysis (PLSDA), K-nearest neighbour, support vector machines and back propagation neural network. Wavelengths found to have a significant response to the presence of spider mites were extracted using competitive adaptive reweighted sampling (CARS), sub-window permutation analysis (SPA) and random frog (RF) and benchmarked using the classification models. CARS and SPA provided high detection success (86% prediction accuracy), with the wavelengths found to be significant corresponding with the red edge and near-infrared portions of the spectrum. As there is limited access to operational commercial hyperspectral imaging and additional complexity, a multispectral camera (Sequoia) was assessed for detecting spider mite impacts on banana plants. Simulated multispectral bands were able to provide a high level of detection accuracy (prediction accuracy of 82%) based on a PLSDA model, with the near-infrared band being most important, followed by the red edge, green and red bands. Multispectral vegetation indices were trialled using a simple threshold-based classification method using the green normalised difference vegetation index (GNDVI), which achieved 82% accuracy. This investigation determined that remote sensing approaches can provide an accurate method of detecting mite infestations, with multispectral sensors having the potential to provide a more commercially accessible means of detecting outbreaks.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Remote Sensing | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | A Comparison of Analytical Approaches for the Spectral Discrimination and Characterisation of Mite Infestations on Banana Plants | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/rs14215467 | en |
local.contributor.firstname | Aaron | en |
local.contributor.firstname | Andrew | en |
local.contributor.firstname | Stuart | en |
local.contributor.firstname | David W | en |
local.contributor.firstname | Kasper | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | arobson7@une.edu.au | en |
local.profile.email | dlamb@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 5467 | en |
local.format.startpage | 1 | en |
local.format.endpage | 18 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 14 | en |
local.identifier.issue | 21 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Aeberli | en |
local.contributor.lastname | Robson | en |
local.contributor.lastname | Phinn | en |
local.contributor.lastname | Lamb | en |
local.contributor.lastname | Johansen | en |
dc.identifier.staff | une-id:arobson7 | en |
dc.identifier.staff | une-id:dlamb | en |
local.profile.orcid | 0000-0001-5762-8980 | en |
local.profile.orcid | 0000-0002-2917-2231 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/58220 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A Comparison of Analytical Approaches for the Spectral Discrimination and Characterisation of Mite Infestations on Banana Plants | en |
local.relation.fundingsourcenote | This research was funded by Horticulture Innovation and the Department of Agriculture and Water Resources, Australian Government as part of its Rural R&D for Profit Program's subproject "Multi-Scale Monitoring Tools for Managing Australia Tree Crops—Industry Meets Innovation" (grant RnD4Profit-14-01-008). | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Aeberli, Aaron | en |
local.search.author | Robson, Andrew | en |
local.search.author | Phinn, Stuart | en |
local.search.author | Lamb, David W | en |
local.search.author | Johansen, Kasper | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/f2cc3483-cfd7-47b8-a19a-2426b1108329 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2022 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/f2cc3483-cfd7-47b8-a19a-2426b1108329 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/f2cc3483-cfd7-47b8-a19a-2426b1108329 | en |
local.subject.for2020 | 3002 Agriculture, land and farm management | en |
local.subject.seo2020 | tbd | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/AComparisonRobsonLambRobsonLamb2022JournalArticle.pdf | Published version | 3.23 MB | Adobe PDF Download Adobe | View/Open |
This item is licensed under a Creative Commons License