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Abstract: This research investigates the capability of field-based spectroscopy (350–2500 nm) for
discriminating banana plants (Cavendish subgroup Williams) infested with spider mites from those
unaffected. Spider mites are considered a major threat to agricultural production, as they occur on
over 1000 plant species, including banana plant varieties. Plants were grown under a controlled
glasshouse environment to remove any influence other than the imposed treatment (presence or
absence of spider mites). The spectroradiometer measurements were undertaken with a leaf clip over
three infestation events. From the resultant spectral data, various classification models were evaluated
including partial least squares discriminant analysis (PLSDA), K-nearest neighbour, support vector
machines and back propagation neural network. Wavelengths found to have a significant response
to the presence of spider mites were extracted using competitive adaptive reweighted sampling
(CARS), sub-window permutation analysis (SPA) and random frog (RF) and benchmarked using the
classification models. CARS and SPA provided high detection success (86% prediction accuracy),
with the wavelengths found to be significant corresponding with the red edge and near-infrared
portions of the spectrum. As there is limited access to operational commercial hyperspectral imaging
and additional complexity, a multispectral camera (Sequoia) was assessed for detecting spider mite
impacts on banana plants. Simulated multispectral bands were able to provide a high level of
detection accuracy (prediction accuracy of 82%) based on a PLSDA model, with the near-infrared
band being most important, followed by the red edge, green and red bands. Multispectral vegetation
indices were trialled using a simple threshold-based classification method using the green normalised
difference vegetation index (GNDVI), which achieved 82% accuracy. This investigation determined
that remote sensing approaches can provide an accurate method of detecting mite infestations, with
multispectral sensors having the potential to provide a more commercially accessible means of
detecting outbreaks.

Keywords: banana plants; spectral analysis; spider mite; precision agriculture; variable selection;
classification; UAV

1. Introduction

Worldwide, banana (Musa spp.) cultivation is vital to economies, having an estimated
value of 31 billion USD and export value of 8 billion USD with the majority of production
based in Asia, Latin America and Africa [1]. The largest producers are India and China,
with annual production of 29 and 11 million tonnes, respectively [2]. Aside from their
commercial importance, bananas are also considered the third most important starchy
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food source with approximately 85% sourced from subsistence agriculture and providing
25% of calorific intake in rural production areas [3–5]. Although minor in comparison,
commercial banana cropping is an important industry in Australia with bananas being the
most purchased fruit with a wholesale value (fresh supply) of 723 million AUD annually [6].

In many banana cropping regions, mites Tetranychus lambi and Tetranychus urticae
(Trombidiformes: Tetranychidae) are considered a major pest [7]. Mite damage occurs on the
underside of leaves where much of their lifecycle is focused. Mites’ piercing mouthparts
are used to penetrate the leaf mesophyll layer to feed on chloroplasts. Damage to plant cells
varies depending on plant species [8] with undisturbed feeding causing cell destruction
and loss of photosynthetic capacity with some plants reported to alter chemical makeup
as a defensive response [9,10]. In banana plants, the early stages of leaf damage are
characterized by rusty necrotic patches that spread to leaf veins as outbreaks worsen. Left
unchecked, entire leaves become grey or brown, wilt and collapse with eventual sunburn,
leaf loss and reduction in plant growth [7]. Severe outbreaks can also lead to superficial
fruit damage making fruit less marketable domestically and significantly impacting exports
that often have strict quality standards [11].

Traditional treatments rely on chemical pesticide application at regular intervals. This
‘blanket’ application is inefficient, tying up labour and resources and leads to pesticide
overuse, causing potential pest resistance, residue on produce, negative environmental
effects [12] and inadvertent loss of natural predators [7]. To reduce pesticide application,
crop monitoring is recommended followed by a more targeted treatment. Due to mites’
short life cycle and high mobility, it is recommended that regular (fortnightly at minimum)
monitoring be undertaken as mite infestations are quick to establish during favourable
conditions (hot dry weather) [7,13]. Current industry guidelines recommend monitoring
based on visual appraisal and treatment either triggered during the early stages of infes-
tation, particularly during conditions that are favourable to growth or through the use
of action thresholds that are triggered based on percentage coverage of physical mites or
mite damage to plants [13]. Early treatment reduces the potential for damage in plants as
infestation is rapid and density is directly related to worsened leaf damage [14,15]. Mite
infestation monitoring can be labour-intensive and success relies on visual appraisal which
can be subjective with recommended monitoring and triggers varying based on jurisdic-
tion [7,13,16]. Improvements in monitoring efficiency that can provide greater consistency
would therefore be beneficial.

Damage to crops caused by spider mites is considered substantial and affects over
1000 plant species [17] prompting the investigation of remote sensing for the detection
and monitoring of mites in different crops such as cotton [15,18], strawberry [19], peppers,
beans [20], peach trees [21] and cucumber [22]. Many of these studies utilized chemometric
analysis techniques on gathered hyperspectral data of leaves to identify mite infestation.
Analysis techniques such as partial least squares discriminant analysis (PLSDA), K-nearest
neighbour (KNN), support vector machines (SVM), and neural networks are well suited as
they are able to distinguish patterns in datasets comprising thousands of spectral bands
and create models for prediction and discrimination [23,24]. Based on these studies, remote
sensing has been found to provide good results in detecting leaf spectral changes associ-
ated with mite damage. The application of remote sensing has several advantages over
traditional forms of monitoring, providing repeatable, timely and quantifiable monitoring
with greater efficiencies [25,26].

Often only specific portions of the spectrum provide discrimination between treat-
ments, so in the interests of simplifying classification models, variable selection methods
can be used to identify more correlated wavelengths within hyperspectral data for clas-
sification. The ability to reduce the number of variables whilst providing high levels of
classification accuracy has computational benefits by simplifying model structures, and
addressing issues associated with collinearity [27]. Additionally, the identification of key
spectral regions as opposed to the full spectral response may allow the use of more simplis-
tic sensors such as multispectral, reducing analysis complexity, are more affordable and



Remote Sens. 2022, 14, 5467 3 of 18

have greater commercially availability, a major consideration if this technology is to be
adopted on-farm. Examples of variable selection methods include competitive adaptive
reweighted sampling (CARS), a method that has been used for nitrogen content estimation
in apple trees [28] and walnut variety identification [29] Sub-window permutation anal-
ysis (SPA) has also been used for the detection of powdery mildew on wheat [30], while
random frog (RF) has been applied to determine polyphenols in tea [31] and wheat grain
variety identification [32].

There is much interest in the application of unoccupied aerial vehicles (UAV) also
referred to as drones, unmanned aerial vehicles or remotely piloted aerial systems for use
in precision agriculture for their ability to provide high spatial and temporal resolution
imagery in a relatively cost-effective manner [33–36]. The increasing affordability and avail-
ability of UAV multispectral sensors, often specifically designed for plant and agricultural
applications provide the potential for monitor of mite infestations. Successful detection
of mites on cotton plants using a UAV near-infrared (NIR), red and green multispectral
camera provided an overall accuracy of 0.95 using a neural network classification [37].

As discussed by Herrmann et al. [20] leaf structure and the biochemical response to
mite attack differ between plants, resulting in differences in spectral response and detection
success. Therefore, an investigation into the spectral characterization and detection of
mite damage provides important information on the ability to detect infestations of mites,
specific to banana plants. Few remote sensing studies exist on the detection of pests in
banana crops. Roderick et al. [38] examined the potential link between canopy leaf area
index and the presence and population size of nematodes. Selvaraj et al. [39] detected
banana corm weevil presence from images of cut corms (in a destructive process) using
neural network object detection. In contrast, disease detection has had far greater focus,
with pest detection being an important element in the development of a holistic precision
agriculture applications in banana crops. Understanding the spectral response to mite
attack fills an important knowledge gap in pest and disease detection methods.

This study investigates the capability of proximal remote sensing to detect spider
mite infestations in banana plant crowns. A benchmark of different classification methods,
including PLSDA, KNN, SVM and back propagation neural network (BPNN), and a
combination of variable selection methods including CARS, SPA and RF, was carried out
on hyperspectral data captured during infestations to determine classification efficacy and
identify sensitive wavelengths for detection. Included in the investigation was the potential
use of a common off-the-shelf UAV-based multispectral sensor to determine suitability for
detecting mite outbreaks in banana crops.

2. Materials and Methods
2.1. Experimental Design

Musa AAA (Cavendish subgroup Williams) bananas were received as lab-grown
tissue culture plantlets with established roots (N = 42) from Queensland Government
(Nambour, Queensland). The plants were transferred to seedling trays for acclimatization
and primary hardening under growth lights in a temperature-controlled environment
for 2 months [40]. Plants were then repotted into 200 mm ANOVATM pots using UQ23
potting media consisting of 70% composted pine bark (0–5 mm) and 30% coco peat and
provided with on-demand watering and fertilization (Grow Force Ltd., Macquarie Park,
Australia., Flowfeed EX7; Nitrogen (N) (20.8%), Phosphorus (P) (3.3%), and Potassium (K)
(17.4%) to ensure constant availability and reduce nutrient or water-related stress [41,42].
Plants were split randomly into two groups (21 plants per treatment) and placed in separate,
adjacent evaporatively cooled and heated glasshouses at the University of Queensland (UQ),
St. Lucia campus. Glasshouse temperatures ranged from 17–35 ◦C, with the photoperiod
dictated by natural sunlight. Plant location and density were adjusted according to size to
minimize adjacent plant leaf overlap with plant location randomly assigned on a weekly
basis within each treatment [42].
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Following five months of growth, at which time banana plants had an approximate
height of 110 cm and the length of the first fully unfurled leaf was approximately 70 cm, 21
of the plants in a single glasshouse were exposed to mite outbreaks. Glasshouse protocol
requires immediate pest control when mite infestations exceed approximately 10% leaf
coverage of each plant. Monitoring was based on daily visual assessment of both the
upper and lower surface of leaves to estimate if mites were present on 10% or more of each
plant, with initial assessment carried out by glasshouse staff and follow-up assessment
confirmation and approval to carry out treatment by the glasshouse facility manager
(qualified horticulturalist). In general, at the 10% density levels, mite colonies were often
encountered in the upper crown leaves with damage considered to be low [7], and prior to
the appearance of rusty necrotic patches described in the introduction. The early damage
presented predominantly as faintly visible light green to light brown interveinal stippling
discolouration, typically varying in size from whole portions of the leaf to localised patches,
compared to healthy green leaves (Figure 1). Due to the short life cycle of mites and
high mobility, regular (daily) monitoring was carried out as mite infestations are quick
to establish during favourable conditions (hot dry weather) [7,13] with the glasshouse
conditions allowing mites to double population every four days (Personal communication).

Figure 1. Example of mite infestation and damage to banana plant leaf (a) and a healthy banana plant
leaf (b) red insets provide indicative areas of interest for each treatment.

2.2. Spectral Data Collection and Pre-Processing

Prior to treatment, in situ glasshouse spectral reflectance measurements were captured
on 1 November 2017, 17 December 2017 and 9 January 2018 between 11 a.m.–1 p.m. using
an ASD Fieldspec 4 (Analytical Spectral Devices, Boulder, CO, USA) spectrometer with
a spectral range of 350 nm to 2500 nm and spectral resolution of 3 nm Full-Width-Half-
Maximum (ASD, Colorado). Following a device warm-up of at least 20 min for spectral
reading stability, measurements were collected from the uppermost seven fully unfurled
leaves at four locations along the lamina of each leaf (See Figure 2a) from both healthy
(1736 readings) and mite-affected plants (1372 readings). Sampling and sample locations
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were intentionally designed to be consistent and repeatable. In this way measurements
were not specific or targeted toward the presence of mite damage. Targeting only mite dam-
aged portions of leaves was not considered to provide an effective mite detection method
for banana plants as mites are not uniformly distributed over the crown, particularly at
densities considered to trigger management actions. Measurements were collected using an
ASD leaf clip accessory equipped with its own light source (4.5 W halogen lamp) and 2 cm
field of view, providing standardization of measurements (Figure 2b). Use of the leaf clip
allowed in situ sampling and ensured that measurements were not subject to ambient light
variability that may be caused by shadow or atmospheric conditions (e.g., cloud cover, glass
roof, etc.). This standardization was considered necessary for measurement consistency
to reduce plant disturbance and ensure stable environmental conditions throughout the
entirety of the sampling events [24]. Measurements were made with minimal interruption
between treatment groups to reduce any potential for variation in reflectance caused by
diurnal photosynthetic processes and temperature. Spectral optimization and calibra-
tions were carried out every 5–7 min, i.e., approximately every 3rd plant measurement
(21 leaves) [43,44].

Figure 2. Location of the four hyperspectral leaf clip measurements taken along each leaf (a), using
an ASD Fieldspec 4 spectrometer fitted with leaf clip accessory to make in situ spectral measurements
of banana leaves (b).

Glasshouse gathered spectral reflectance data were processed and exported using the
ASD ViewSpecPro software. From these reflectance measurements, plant averages were
calculated and wavelengths associated with water absorption (1350–1420 nm, 1770–1965 nm,
2450–2500 nm), as well as wavelength regions known to be noisy were removed
(350–450 nm) [24,45]. Screening for potential outliers was based on Hotelling T2 and
Q residuals calculated from principal component analysis with spurious measurements
removed. Varied pre-processing data treatments commonly used to account for systematic
noise, light source variation or scattering and for rectifying baseline drift were trialled to im-
prove model development and separability between classes [29,46]. These included mean
centering and combinations of multiplicative scatter correction (MSC), standard normal
variate (SNV), and first order and second order Savitzky-Golay derivatives. Pre-treatment,
classification model analysis and variable selection were conducted in Matlab 2017 (The
MathWorks, Natick, Ma, USA.) using the classification toolbox [47], libPLS [48] and the
eigenvector PLS-toolbox (Eigenvector, Wenatchee, WA, USA).

2.3. Classification Models

Four classification models were trialled, including PLSDA, KNN, SVM and BPNN
(Figure 3). Prior to analysis, a calibration dataset and independent prediction dataset was
created using Kennard-Stone sampling to create an 80/20 data split [49]. All calibration
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data models had Venetian blinds cross-validation (10 splits) applied, the results of which
aided model optimization decisions. Venetian blinds cross-validation is a commonly used
cross-validation method [20,29,50] that carries out systematic sample selection based on the
selected number of splits to create test sets from which cross-validation is carried out. The
sampling pattern was repeated across the entire dataset until all split combinations had been
tested [47]. Constructed models were then tested using the discrete prediction data and
performance was measured based on classification accuracy on calibration, cross-validation
and prediction outputs calculated according to Equation (1):

accuracy = correctly predicted samples/total number of samples (1)

Figure 3. Flowchart of key steps for testing spectral discrimination modelling approaches and variable
selection methods (wavelength reduction) for the detection of mite infestations on banana plants.

PLSDA is commonly used for the analysis of hyperspectral data for its ability to handle
large, often highly correlated (collinear) datasets consisting of thousands of wavelengths
(X-variables). Partial least squares regression reduces the data by using a series of iterative
processes to create a smaller number of latent variables (or components) from which
categorical classification can be carried out. The addition of discriminant analysis to
PLSDA incorporates categorical classification analysis by splitting variables into categorical
variables and maximising the distance between variables (e.g., pest vs. no pest) [51,52].

The KNN classifier is a non-parametric supervised classifier that works based on
grouping samples with similar features together and assumes sample groupings belong to
the same class. Based on similarity, samples that are clustered can be assigned to a class
based on a proximity measure to reference samples in a non-linear fashion [29,53]. For this
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study, Euclidean distance was used as the measure to group samples, and models were
optimized based on K values between 3–15.

SVM provides classification by placing sample data into a projection space and con-
structs hyperplanes designed to provide maximum separation between classes. To improve
classification performance, a radial basis function was applied to the hyperplane and op-
timized using a grid search procedure to improve class separability commonly used for
close or overlapping sample classes not able to be easily separated [27,28,54].

BPNN is a commonly used neural network comprising a feed-forward neural network
that uses backward propagation of error to adaptively fine-tune weights during network
training [55,56]. Training networks in such a manner provides more efficient learning
and greater reliability [56]. BPNN for this study was based on a single hidden layer.
Combinations of network architectures trialled included changes to the number of neurons,
learning rate, number of iterations and alpha/learning weight.

2.4. Variable Selection of Key Spectral Wavelengths

Trials of different variable selection methods were used to reduce the hyperspectral
data to key wavelengths most relevant for classification and to reduce data redundancy. Ad-
vantages of reducing spectral dimensionality include greater computational efficiency and
the potential for better classification results [27]. Variable selection methods used include
CARS, RF and SPA. Classification model accuracy based on CARS, RF and SPA were calcu-
lated (Equation (1)) and the performance was compared, between models based on selected
wavelengths as opposed to all available spectral bands from the hyperspectral dataset.

The CARS variable selection approach uses Monte Carlo sampling (MCS) to select sub-
sets of variables used to create a series of PLS (partial least squares) models. The variables
in these models that have the largest regression coefficient are selected in a competitive
manner, using “survival of the fittest”, while variables providing less contribution are
iteratively removed using a combination of exponential decay and adaptive reweighted
sampling to further refine the number of variables. Final variables from these reduction
steps are selected based on the lowest root mean square error (RMSE) obtained from
cross-validation of the dataset [57].

As described by Li et al. [58] RF uses a selection method inspired by reverse jump
Markov chain Monte Carlo (RJMCMC) methods to iteratively build models from which
important variables are selected. Consisting of a series of steps starting with the construc-
tion of PLS models based on a random variable subset selected using MCS, from the results
of the initial model performance, additional variable subsets are selected and tested. The
number of iteration runs is based on user-defined criteria and selection based on their
ability to fulfil probability criteria. Based on the success of the models created, the most
important variables are determined [58].

SPA variable selection is designed to calculate the most suitable complementary
variable combinations aiding detection. SPA determines the most important variables by
comparing the distribution of normal prediction error (NPE) based on a comparison of
randomly created PLS models of training and test data subsets to results obtained using
variable permutations of the test set data (permutated prediction error (PPE)). Comparing
NPE to PPE scores determines which variables provide improvement to the model. Variable
importance is able to be measured using a conditional synergetic score (COSS), a logarithmic
transformed P value calculated from a Mann–Whitney U test of NPE and PPE’s [48,59].

2.5. UAV Multispectral Discrimination

To determine the utility of a UAV-mounted multispectral sensor for the detection of
mite outbreaks on banana leaves, hyperspectral reflectance data were resampled using the
hsdar package (version 1.0.3) in Rstudio (Version 1.4.1717, Boston, MA, USA) to match
the approximate spectral band-pass functions, (e.g., Table 1, centre band ± FWHM/2)
of the Parrot Sequoia® multispectral camera (Parrot Drone SAS, Paris, France). The Par-
rot Sequoia is a common off-the-shelf UAV sensor marketed for monitoring agriculture,
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acquiring data in green (G), red (R), red edge (RE) and near-infrared (NIR) bands (de-
tails provided in Table 1). Determination of detection accuracy (Equation (1)) of mite
damage using Parrot Sequoia data was carried out using a PLSDA model and the most
effective band(s) for detection were ranked based on the amount of explained variance each
band contributed [20].

Table 1. Parrot Sequoia multispectral camera attributes.

Band Centre (nm) FWHM (nm)

Green 550 40
Red 660 40

Red edge 735 10
Near-infrared 790 40

Several common broad band vegetation indices (VI’s) identified to detect mite damage
were created including the normalised difference vegetation index (NDVI) (Equation (2)),
the green NDVI (GNDVI) (Equation (3)), the red edge NDVI (REGNDVI), and NIR red
edge NDVI (NRENDVI) (Equation (5)) [20]. In addition, to determine the potential use of
only visible bands for mite detection, the green-red vegetation index (GRVI) (Equation (6))
was included [36,60]. To determine if VI’s are able to provide separation between treatment
groups a two-class t-test was used, to determine detection success a threshold was created
based on the mean score between the highest VI value of the infested class and the lowest
VI value for the non-infested class [61]. Individual VI detection accuracies based on these
thresholds were provided using Equation (1).

NDVI = (NIR − Red)/(NIR + Red) (2)

GNDVI = (NIR − Green)/(NIR + Green) (3)

REGNDVI = (NIR − Red edge)/(NIR + Red edge) (4)

NRENDVI = (NIR − Red edge)/(NIR + Red edge) (5)

GRVI = (Green − Red)/(Green + Red) (6)

3. Results and Discussion

A general visual comparison of spectral reflectance curves of banana plants with
mite presence and absence shows some spectral separability in the visible portion of the
spectrum with infested plants having slightly higher reflectance in the blue and green
portions of the spectrum (450–550 nm) followed by more obvious separation in green
through to early red portion (550–650 nm) (Figure 4). In addition, separation between
treatments can be observed in the red edge portion of the spectrum (680–730 nm) with the
infested plants having higher reflectance toward shorter wavelengths. Increased reflectance
can also be observed for some infested plants in the near-infrared region (760–1300 nm)
and adjacent water absorption bands around 1500–1750 nm and 1965–2150 nm.



Remote Sens. 2022, 14, 5467 9 of 18

Figure 4. Averaged reflectance spectra for healthy banana plants and mite-infested banana plants gathered
from mite outbreaks at the University of Queensland glasshouses on 1 November 2017, 17 December 2017
and 9 January 2018. Solid lines indicate the average and dash lines indicate ± standard deviation.

3.1. Classification Model Results for Discriminating between Infested and Healthy Plants

Classification models based on full spectra (1733 spectral bands) provided high levels
of classification accuracy across all models trialled, indicating mite damage to banana
leaves causes distinct spectral change able to be modelled during the earlier stages of mite
infestation (Table 2). Across all modelling methods, the most consistently accurate classi-
fications used pre-processing consisting of Savitzky-Golay 1st Derivative and SNV. With
similar classification model results for calibration, validation and prediction data sets sup-
porting model validity and indicating minimal model overfit. The use of a Savitzky-Golay
derivative smooths data to remove unwanted random noise and uses differentiation to
reduce low-frequency additive and multiplicative effects in spectra for signal enhancement.
SNV applies a correction factor to adjust baseline shifts and reduce additive and multiplica-
tive scatter effects [46]. Light scattering and path length differences can be attributed to
illumination and leaf structure. Whilst leaf surface irregularities may influence reflectance,
most wavelengths and in particular infrared are altered by scattering and diffusion caused
by internal structure and content. The architecture of the internal cell structure (cuticle,
mesophyll, epidermis, etc.) and density of cell walls, pigment contents and air cavities
all contribute to wavelength scattering based on structural elements and refractive dif-
ferences [62,63]. Differences in reflectance influenced by scattering between different leaf
locations and between plants are cause for variation in spectral data and common, well-
established data pre-processing methods improve classification model results by reducing
unwanted sample variability and are considered vital to most spectroscopic modelling [46].

Of the models, KNN (K = 10) provided the least accurate result (0.76 calibration
and 0.81 prediction) but despite a reduction in accuracy compared to other models it still
provided a reasonable result with the advantage of being the fastest to implement due to
its simple architecture and reduced complexity compared to other models. Similarly high
levels of accuracy were achieved for PLSDA (LV: 4), SVM (cost 100, gamma 0.1, SV 45) and
BPNN (iterations 1000, learning rate 0.1, alpha 0.1) with PLSDA providing a slightly better
result in the prediction set of 0.91 (Table 2). For this experiment, PLSDA was able to provide
a high level of classification accuracy based on a low complexity model with few classes. In
situations where datasets have high levels of noise and variability, linear models (such as
PLSDA) are considered less robust and have greater sensitivity to dataset variance. In these
circumstances non-linear models such as SVM and BPNN are considered to outperform
linear models and provide greater levels of accuracy with established non-linear models
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having greater repeatability across datasets [28]. Many contemporary comparisons of
classification models consider neural networks to provide superior results, particularly
where spectral change is less distinct and involve multiple classes [28,32]. Neural networks
generally require greater computation, training time and user input, than the alternative
methods investigated. In cases of linear datasets containing easily separable classes, models
can be at risk of overfitting [56]. For the application of BPNN in this study, it was discovered
that attempts to generalize calibration models through changes to network architecture led
to a reduction in the accuracy of the validation and prediction models. Therefore, similar
to Wang et al. [23] a greater level of overfitting was retained in the calibration model to
provide greater model accuracy in the validation and independent prediction dataset.

To confirm experimental validity and potential for sample bias, the created models
were applied to hyperspectral data gathered 9 days prior to infestation events using an
identical sampling protocol to that described in Section 2.2. Model results determined that
both treatment groups were classified as undamaged prior to investigation. This was an
important exercise due to the limited number of samples and the potential that the spectral
variations between the treatments may have been unrelated to the presence and absence of
mites, i.e., from other biotic or abiotic constraints.

Table 2. Accuracy performance of classification models based on full spectra.

Modelling
Method

Accuracy

Calibration Set Validation Set Prediction Set

PLSDA
None 0.89 0.82 0.90

SG + SNV 0.92 0.84 0.91

KNN
None 0.77 0.77 0.86

SG + SNV 0.76 0.77 0.81

SVM
None 0.99 0.83 0.82

SG + SNV 1.00 0.88 0.86

BPNN
None 1.00 0.88 0.79

SG + SNV 1.00 0.89 0.85
PLSDA: partial least squares discriminant analysis; KNN: K-nearest neighbour; BPNN: back propagation neural
network; SG: Savitzky-Golay derivative; SNV: Standard Normal Variate. Model calibration and validation sets are
based on 80% of samples. Model calibration based on the full dataset with validation accuracy results based on
Venetian blinds 10-fold cross-validation of dataset. The remaining 20% of plant spectral average samples were
used as a prediction set for model verification.

3.2. Key Wavelength Selection

Prior to modelling, key wavelengths were selected using CARS, SPA and RF to reduce
spectral data dimensionality using operations discussed in Section 2.4 to select the most
important wavelengths for use in models for discrimination between healthy banana plants
and mite-infested banana plants. Wavelengths selected varied between each of these
methods, a reflection of the different mathematic operations used for selection. This section
discusses wavelength selection output results for CARS, SPA and RF.

Wavelength selection by CARS was based on 200 iterations and ten-fold cross-validation
with optimal cross-validation based on 20 latent variables. From the graphical representation
of the CARS selection process, the top panel trendline (Figure 5a) indicates an initial rapid
pace of fast selection based on the elimination of poor-performing variables through the
exponential decreasing function. Flattening and slowing of the slope indicates the refined
selection process focusing on the remaining, most competitive variables. Figure 5b indicates
that a minimum RMSE was reached after 133 sampling runs during which 1713 redundant
wavelengths were removed. The upward inflection in the cross-validated error indicates
that some useful variables were omitted after this point with models returning worse RMSE
scoring. Figure 5c provides a graphical representation of the regression coefficient recorded
for each wavelength (represented by individual coloured lines) throughout the different
sampling runs and provides an indication of how different wavelengths influence the RMSE
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based on their addition to and removal from the sampling run. Ranking of the 20 most
selected variables indicates that spectra in the visible blue portion were most important
followed by green, red to red edge, followed by groupings of similar spectra in near-infrared
and shortwave infrared (SWIR), with the highest representation of variables from the red
edge portion of the spectrum (Table 3). SPA variable selection based on 2000 iterations
determined 20 ranked variables as expressed from a plot of COSS values (Figure 5d).
Selected wavelengths (Table 3) feature high representation in the red edge and near-infrared
part of the spectrum. RF variable selection based on 10,000 iterations suggested variables
predominantly in the SWIR portion of the spectrum (Figure 5e and Table 3), with the
addition of blue and near-infrared portions of the spectrum. The reduced number of
wavelengths selected based on CARS, SPA and RF, for the classification models (Section 3.3),
provide a decreased spectral dimensionality with greater computational efficiency and
potential for better classification results due to reduced noise, and overfitting [27].

The CARS and SPA selected wavelengths (Table 3) are similar to those identified as
important for modelling mite infestations in other crops, including green-yellow and most
prevalent, the red edge bordering near-infrared portions of the spectrum with individual
wavelengths falling between 497–580 nm and 680–744 nm for cotton [15], peach trees [21],
strawberries [19], peppers and beans [20]. Other identified wavelengths, although less
commonly identified in other studies shared with RF, SPA and CARS are the upper values
of NIR to SWIR for strawberries (800–1300 nm) [19] and peach (1405–2500 nm) [21]. Not
commonly associated with other studies is the inclusion of blue (466 nm) in CARS and
RF. However, violet-blue (365 nm) has been identified as important for peach trees [21]. It
should be noted that most studies identified used visible and near-infrared sensors rather
than the full range which could explain a reduced representation in the upper NIR and
SWIR parts of the spectrum.

Mite infestation is rapid with increasing density directly related to leaf damage, be-
cause of this it is important to detect and treat infestations rapidly as sustained or high-
density predation alters both chemical and structural properties of leaves, causing plant
stress, reduced photosynthesis and dehydration [9,14,15]. Initial physical damage is caused
by mites accessing the leaf mesophyll layer to feed on chloroplasts. This mechanical dam-
age and draining of cells alter internal leaf structure changing leaf turgidity changing
internal refraction of various cells and reflectance, particularly in the infrared portion of the
spectrum [63]. Sustained feeding on chloroplasts causes additional damage through alter-
ation to pigment composition and eventual loss of internal leaf structure integrity [20,64].
Pigment alteration caused by parasitism and also the plant’s defensive response result in
spectral change [14,65] that spans the visible portions of the spectrum to the initial portions
of near-infrared (380–810 nm). The spectral regions identified in the study include blue
(450–550 nm) represented by chlorophyll and carotenoids and blue to green (450–550 nm)
portions of the spectrum, influenced by the pigments beta-carotene, chlorophyll (predomi-
nantly chlorophyll b) and anthocyanins. Visible green to early red (550–650 nm), are also
representative of anthocyanins and chlorophyll b and red edge (680–730 nm) of chlorophyll
and anthocyanins. Changes to near-infrared (760–1300 nm) can represent chlorophyll b
and anthocyanins in the early portions (<810 nm) [66] but are generally influenced by
internal leaf structure and thickness. Portions of SWIR (1500–1700 nm and 1750–2150 nm)
could indicate changes in leaf water content related to dehydration [19,67]. Although the
mechanics and habits of feeding by mites are well understood [64], further investigation
is warranted into detecting changes in leaf pigment, water content and cell structure in
response to mite damage to further understand the drivers behind the spectral change in
banana plants.
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Figure 5. Competitive adaptive reweighted sampling (CARS) variable selection with top
panel (a) indicating the number of Monte Carlo (MC) samples and rate of selection. The middle panel
(b) indicates cross-validated error based on progression of the selection process, while the bottom
panel (c) indicates trends in regression coefficients of individual wavelengths over the course of the
sampling runs with each wavelength represented by a coloured line and the asterisk line indicating the
subset with the lowest root mean square error (RMSE) of cross-validation identified after 133 sampling
runs. (d) Sub-window permutation analysis (SPA) variable selection chart of conditional synergetic
score (COSS) values with the most important wavelengths having higher scores. (e) Random frog (RF)
selection probability with higher scores indicating the most important wavelengths.
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Table 3. Variable selection by competitive adaptive reweighted sampling (CARS), sub-window
permutation analysis (SPA) and random frog (RF) of the most suitable wavelengths for the classifica-
tion of mite infestation on banana plants. Wavelength selection ranked in order of importance for
SPA and RF.

Variable Selection Method Wavelength (nm)

CARS 466, 532, 662, 695, 820, 982, 983, 993, 1088, 1176, 1193,
1194, 2034, 2035, 2036, 2037, 2128, 2129, 2130, 2316

SPA 822, 695, 1232, 1204, 701, 1185, 839, 733, 1176, 697, 719,
837, 702, 693, 747, 827, 2033, 870, 1249, 760

RF 466, 983, 2129, 2034, 465, 2128, 2130, 2127, 2031, 824, 2042,
2126, 2123, 979, 2039, 2035, 2137, 2033, 1176, 2038

Underlined values indicate commonly shared wavelengths for all variable selection methods; red values indicate
shared wavelengths for CARS and SPA; blue values indicate shared wavelengths for CARS and RF; green values
indicate shared wavelengths for SPA and RF.

3.3. Key Wavelength Classification Model Accuracy

In general, a comparison of models built on CARS and SPA variable selection meth-
ods provided similar accuracies to that of full spectra models and even provided greater
accuracy when applied to KNN models (0.86 and 0.82 prediction accuracy respectively).
However, RF reduced the performance by close to 20% compared to the highest per-
forming model of the CARS prediction data set (Table 4). Comparing variable selection
methods, CARS provided the greatest consistency and accuracy across models with iden-
tical prediction accuracies of 0.86 for KNN, SVM and BPNN. In practice using KNN and
SVM based on CARS-selected wavelengths provided greater implementation efficiency
than that of BPNN making these combinations a potentially more suitable choice whilst
maintaining accuracy.

Table 4. Accuracy performance based on a combination of classification models and variable
selection methods.

Modelling Method
Accuracy

Calibration Set Validation Set Prediction Set

CARS + PLSDA 0.87 0.86 0.82
CARS + KNN 0.83 0.86 0.86
CARS + SVM 0.84 0.84 0.86

CARS + BPNN 0.99 0.87 0.86
SPA + PLSDA 0.83 0.79 0.82
SPA + KNN 0.81 0.79 0.82
SPA + SVM 0.84 0.79 0.86

SPA + BPNN 1.00 0.70 0.73
RF + PLSDA 0.80 0.72 0.68
RF + KNN 0.72 0.68 0.60
RF + SVM 0.70 0.67 0.68

RF + BPNN 1.00 0.72 0.71
CARS: competitive adaptive reweighted sampling; SPA: sub-window permutation analysis; RF: random frog (RF).
Model calibration set accuracy based on 80% of samples. Validation set accuracy based on Venetian blinds 10-fold
cross-validation testing of calibration dataset. The remaining 20% of the plant spectral average dataset was used
as a prediction set for model verification.

Model accuracy performance of CARS, SPA and RF can be attributed to differences in
the selection of different wavelength bands. For RF, only a small selection of wavelengths
were based in the visible (blue) and near-infrared parts of the spectrum with 70% of the
bands located in the SWIR portion. In contrast, SPA had little SWIR representation with
wavelengths located predominantly in the red edge and NIR parts of the spectrum, whereas
CARS selected wavelengths over a much larger spectral range with a larger inclusion of
the visible portion of the spectrum (blue, green and red), in addition to the red edge,
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NIR and SWIR regions identified in the RF and SPA selections. A notable portion of the
spectrum omitted by the lower performing RF but included in SPA and CARS were the
portions bordering the red edge and early near-infrared wavelengths, which have also been
identified as suitable for mite detection in cotton [15], peach trees [21], strawberries [19],
peppers and beans [20].

The wavelengths chosen using the SPA variable selection may be related to its mech-
anism of selecting combinations of variables that collectively aid detection while aiming
to reduce collinearity, with an overall reduction in the number of variables selected in
potentially useful portions of the spectrum [28,59]. This ability to only select combinations
of variables ensures low redundancy although it may not select optimal variables [68]. In
contrast, the lack of a mechanism to select complementary variable combinations such
as those featured in SPA and reliance on MCS in the RF and CARS methods can lead to
non-optimal variable selection. One potential approach to take advantage of the inherent
features of each method is to combine selection methods such as CARS-SPA [68]. Despite
the possible shortcomings of the different methods, their ability to reduce the number
of variables by over 90% and provide similarly high accuracies to the full spectrum data
demonstrates the effectiveness of variable selection with CARS providing the highest accu-
racy results. Considering that a very high level of classification success was possible using
a significantly reduced number of variables supports the common use of less complex and
more affordable sensors for detection.

3.4. UAV Multispectral Discrimination of Healthy and Mite-Infested Banana Plants

Classification results of hyperspectral reflectance matching attributes of a Parrot
Sequoia® multispectral camera indicated calibration accuracy result of 0.82, validation
accuracy of 0.78 and prediction result of 0.82 using PLSDA (LV:3). Based on the amount
of explained variance that each spectral band contributed to the model, the ranking of
band importance was near-infrared (790 nm), red edge (735 nm), green (550 nm) with
red (660 nm) providing the lowest contribution. VI’s created using Parrot Sequoia band
combinations determined that VI’s incorporating NIR, or red edge provided significant
separation between treatment groups with GNDVI, REGNDVI, NRENDVI and NDVI
all able to separate mite-infested plants to a very high level of significance (p < 0.01).
Likewise, those same VI’s containing RE or NIR provided high levels of accuracy based on
threshold classification with GNDVI (0.82) providing the best result. Classification accuracy
(Table 5) determined that the visible wavelength VI GRVI was unable to provide significant
separation (p > 0.05) and poor accuracy (0.52). A. A similarly poor outcome was found in
cotton using a green and red VI observing that NIR was essential to detection success [69].

Table 5. Significant results obtained based on a t-test to determine separation between mite-infested
and healthy banana plants using vegetation indices and accuracy performance based on threshold
classification using vegetation indices.

Vegetation Index Significance (p-Value) Accuracy

NDVI <0.01 0.79
GNDVI <0.01 0.82

REGNDVI <0.01 0.80
NRENDVI <0.01 0.79

GRVI >0.05 0.52
NDVI: normalised difference vegetation index; GNDVI: green NDVI; REGNDVI: red edge NDVI; NRENDVI: NIR
red edge NDVI; GRVI: green-red vegetation index.

Successful detection of mites using multispectral data has been reported in cotton
using red (660 nm) and NIR (770 nm) wavelengths [18]. In a separate study, two bands
were identified as sensitive to mite damage using variable selection within late red edge to
NIR (758–773 nm) and NIR (1120–1131 nm) wavelengths with both studies applying the
bands to difference vegetation indices [61].
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Similarly, multispectral data was successful in the detection of mites in pepper plants
with comparable levels of detection accuracy to that of hyperspectral data. Interestingly
in the same study, bands considered most important to the PLS model were dependent
on leaf damage. Initial stages of infestation were best detected using green (540–580 nm)
and red (656–676 nm) parts of the spectrum, whereas at greater levels of damage red edge
(710–720 nm) and NIR (770–810 nm) were found to be more important. In contrast to
this, the same authors found that multispectral data only provided moderate detection
success in beans with red edge and green bands being important for low levels of damage
while no distinct band importance was identified at higher levels of damage, whereas
hyperspectral data was able to provide a high level of accuracy [20]. Classification success
based on multispectral sensors is therefore influenced by vegetation types with spectral
differences influenced by leaf structure but also biochemical pigment reaction to mite attack
and feeding patterns on leaves [20,21,65].

The application of a multispectral VI threshold for classification used in our study
was based on a method developed for mite detection in cotton in which a difference VI
was created from bands based on variable selection of hyperspectral data (758–773 nm and
1120–1131 nm). When applied the resultant VI threshold classification outperformed SVM
and random forest-based classification in cotton [61]. Although our study used common
VI’s created from an off-the-shelf multispectral sensor a similar threshold creation method
provided a high level of accuracy. Similar to Huang et al. [61] it is considered that this
threshold classification methods ease of use compared to that of statistical analysis methods is
important to enabling widespread use by ordinary farmers. The process and ease of threshold
creation would allow replication of similar methods over a range of bioregions and spectral
variance related to crop differences, influenced by varying biotic and abiotic factors.

From other UAV-based multispectral remote sensing studies, the use of bands located
in the NIR (800 nm), red (650 nm) and green (550 nm) parts of the spectrum provided
similarly high levels of detection success in cotton plants to that of ground-based multi-
spectral sensors [37]. However, spectral changes due to leaf and canopy structure need to
be considered, and so too does the sensor platform and collection method, which influence
detection success [18,21]. For example, a study by Luedeling et al. [21] identified that
spectral regions sensitive to mite damage differed between data gathered above canopy
using an aircraft-based sensor and at canopy leaf level. Reporting that aerial data had
significant wavelength regions in the blue (390 nm) and red (651 nm) parts of the spectrum
compared to canopy level comprised of blue (356 nm), green (497 nm), red (687 nm), red
edge (744 nm) and SWIR (1405 nm, 1888 nm and 2500 nm) light. Further, aerial NIR
reflectance data of mite-damaged canopies had greater reflectance compared to that of
healthy canopies, whereas at the canopy level NIR reflectance displayed an opposite trend
with Luedeling et al. considering atmospheric absorption and diffuse radiation impacted
spectral outputs. Such atmospheric effects have a reduced influence on lower-flying UAVs.
However, it is important to consider such influences on collected data as well as other
identified considerations relating to UAV data captures [70].

Hyperspectral and multispectral datasets provided detection of mite infestations on
Cavendish banana plants to a high level of accuracy, and it is considered that multispectral
sensors could play an important role in detection and could also provide other precision
agricultural applications for banana crop management. This investigation was conducted
under glasshouse conditions to allow control over environmental factors and minimize
variables to provide a result removed from biotic and abiotic factors encountered in the
field-grown bananas. Therefore, future investigation should consider the effects of other
biotic and abiotic factors such as pests and disease, banana varietal type, crop growth
stages that potentially influence the spectral response, and sensor and platform attributes
that may affect mite detection.
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4. Conclusions

This study demonstrated in a specific set of study conditions that proximal remote
sensing methods provide a high level of accuracy for the detection of mite infestations in
banana plants. The ability to detect mite infestations in the early stages is vital to ensure
outbreaks can be controlled to minimize damage without the need for rudimentary sched-
uled blanket insecticide treatment. Exploration of various pre-processing steps, variable
selection and modelling methods determined that PLSDA, KNN, SVM and BPNN provided
high levels of detection accuracy and through variable selection, the number of wavelengths
required could be greatly reduced while still delivering high levels of detection accuracy.
Tests of a commonly available UAV multispectral sensor (Parrot Sequoia) provided a high
level of detection accuracy with the classification based on a vegetation index threshold
able to simplify the detection process. These results indicate that high throughput detec-
tion of mites in glasshouse environments may be possible with further refinement and
testing of commonly available multispectral sensors and setting of appropriate thresholds
or developed models. The addition of field testing should also be used to determine the
potential application of these approaches for in-field based precision agriculture.
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