Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56845
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeyer, Karinen
dc.date.accessioned2023-12-04T06:26:54Z-
dc.date.available2023-12-04T06:26:54Z-
dc.date.issued2023-01-25-
dc.identifier.citationGenetics Selection Evolution, v.55, p. 1-8en
dc.identifier.issn1297-9686en
dc.identifier.issn0999-193Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/56845-
dc.description.abstract<p>Restricted maximum likelihood estimation of genetic parameters accounting for genomic relationships has been reported to impose computational burdens which typically are many times higher than those of corresponding analyses considering pedigree based relationships only. This can be attributed to the dense nature of genomic relationship matrices and their inverses. We outline a reparameterisation of the multivariate linear mixed model to principal components and its effects on the sparsity pattern of the pertaining coefficient matrix in the mixed model equations. Using two data sets we demonstrate that this can dramatically reduce the computing time per iterate of the widely used 'average information' algorithm for restricted maximum likelihood. This is primarily due to the fact that on the principal component scale, the first derivatives of the coefficient matrix with respect to the parameters modelling genetic covariances between traits are independent of the relationship matrix between individuals, i.e. are not afflicted by a multitude of genomic relationships.</p>en
dc.languageenen
dc.publisherBioMed Central Ltd.en
dc.relation.ispartofGenetics Selection Evolutionen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleReducing computational demands of restricted maximum likelihood estimation with genomic relationship matricesen
dc.typeJournal Articleen
dc.identifier.doi10.1186/s12711-023-00781-7en
dc.identifier.pmid36698054en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameKarinen
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.emailkmeyer@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber7en
local.format.startpage1en
local.format.endpage8en
local.peerreviewedYesen
local.identifier.volume55en
local.access.fulltextYesen
local.contributor.lastnameMeyeren
dc.identifier.staffune-id:kmeyeren
local.profile.orcid0000-0003-2663-9059en
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56845en
dc.identifier.academiclevelAcademicen
local.title.maintitleReducing computational demands of restricted maximum likelihood estimation with genomic relationship matricesen
local.relation.fundingsourcenoteThis work was supported by Meat and Livestock Australia Grant L.GEN.2204.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.urlhttps://doi.org/10.1186/s12711-023-00781-7en
local.search.authorMeyer, Karinen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/32e557df-589e-4f2c-a8c5-0f801ee553a5en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/32e557df-589e-4f2c-a8c5-0f801ee553a5en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/32e557df-589e-4f2c-a8c5-0f801ee553a5en
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.seo2020100401 Beef cattleen
local.profile.affiliationtypeUNE Affiliationen
local.relation.worldcathttps://www.worldcat.org/title/7991814237en
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
Files in This Item:
2 files
File Description SizeFormat 
openpublished/ReducingMeyer2023JournalArticle.pdfPublished version981.92 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

3
checked on Jan 25, 2025
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons