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Abstract 

Restricted maximum likelihood estimation of genetic parameters accounting for genomic relationships has been 
reported to impose computational burdens which typically are many times higher than those of corresponding 
analyses considering pedigree based relationships only. This can be attributed to the dense nature of genomic 
relationship matrices and their inverses. We outline a reparameterisation of the multivariate linear mixed model to 
principal components and its effects on the sparsity pattern of the pertaining coefficient matrix in the mixed model 
equations. Using two data sets we demonstrate that this can dramatically reduce the computing time per iterate of 
the widely used ‘average information’ algorithm for restricted maximum likelihood. This is primarily due to the fact that 
on the principal component scale, the first derivatives of the coefficient matrix with respect to the parameters model-
ling genetic covariances between traits are independent of the relationship matrix between individuals, i.e. are not 
afflicted by a multitude of genomic relationships.

Background
With the increasing availability of genomic informa-
tion for livestock genetic evaluation, incorporating such 
information has become a routine procedure. The most 
common method in use is that of single-step genomic 
best linear unbiased prediction fitting a breeding value 
model, abbreviated to ssGBLUP. Replacing the pedigree-
based inverse of the numerator relationship matrix with 
its counterpart which combines pedigree and genomic 
information [1], it is a conceptually simple extension of 
classic prediction models. This has been exploited in 
adapting existing software to single-step analyses both 
for ssGBLUP and the estimation of genetic parameters 

via restricted maximum likelihood (REML) under such a 
model, which is referred to as ssGREML.

Reviewing the status of genomic evaluation, Misz-
tal et  al. [2] advocated inclusion of genomic relation-
ships when estimating genetic parameters to counteract 
bias due to genomic selection. The authors also recom-
mended more frequent re-estimation as genetic variances 
appeared to change more quickly, but warned about the 
associated computational burden. Contrasting comput-
ing times for pedigree-based REML with ssGREML for 
a data set with 15,723 genotyped animals, Masuda et al. 
[3] reported 100-fold increases for the latter. Sugges-
tions that aimed at reducing computational demands of 
ssGREML analyses included approximation of the inverse 
of the genomic relationship matrix by its APY (algorithm 
proven and young [4]) form, coupled with truncation of 
long pedigrees [5]. Other studies demonstrated the util-
ity of a REML algorithm based on the inverse of the phe-
notypic covariance matrix rather than the mixed model 
equations (MME), e.g. Lee and van der Werf [6].
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Previously, there has been interest in parameteris-
ing multivariate REML analyses to fit genetic principal 
components rather than the standard trait effects. This 
was motivated by the possibilities for dimension reduc-
tion and for estimating covariance matrices with reduced 
rank or a factor-analytic structure [7–10]. When fitted 
at full rank, the standard multivariate (MV) and princi-
pal components (PC) parameterisation yield equivalent 
models but the pertaining MME differ in sparsity of the 
coefficient matrix. Limited comparisons (unpublished) 
of the two models for pedigree-based REML showed 
negligible differences in computational requirements for 
two reasons. First, due to ‘fill-in’, sparsity levels of the 
corresponding Cholesky factors of the coefficient matri-
ces and thus operation counts to factor and invert them 
were comparable. Second, the inverse of the numerator 
relationship matrix was very sparse, so that the reduc-
tion in calculations proportional to the number of non-
zero elements in the coefficient matrix for PC had little 
impact on overall computing times. Conversely, this sug-
gests that for ssGREML–with denser inverse relationship 
matrices—gains that are possible by fitting the PC model 
may be more substantial.

The so-called ‘average information’ (AI-REML) algo-
rithm [11–14] is the preferred algorithm to locate the 
maximum of the likelihood function for many REML 
analyses as it uses both first and second derivatives of 
the likelihood which tends to facilitate good convergence 
rates. We examine its computational requirements for 
ssGREML for the two alternative parameterisations for 
two data sets with moderate numbers of genotyped indi-
viduals, showing that the PC parameterisation can be 
highly effective in reducing computing times.

Equivalent models
Consider a multivariate linear mixed model for q traits:

with y, β , u and e denoting the vectors of observations, 
fixed effects, animals’ additive genetic effects and residu-
als and X and Z the pertaining design matrices, where y is 
assumed to have a multivariate normal distribution and X 
is assumed to have full rank. Let both y and u be ordered 
by traits within individuals. This gives Var(e) = R which 
is block-diagonal for animals with blocks equal to sub-
matrices of �e corresponding to the (subset of ) traits 
recorded, with �e the q × q matrix of residual covari-
ances between traits. Furthermore, Var(u) = H⊗�u , 
with H the relationship matrix between animals, �u the 
q × q genetic covariance matrix between traits and ‘ ⊗ ’ 
denoting the Kronecker product. Among other options, 
H can represent the pedigree-based numerator relation-
ship matrix, the genomic relationship matrix or the joint 

(1)y = Xβ+ Zu + e,

relationship matrix between genotyped and non-geno-
typed individuals [1].

The pertaining mixed model equations (MME) equations 
are then:

Let C, partitioned as in Eq. (2), denote the coefficient 
matrix in the MME:

Each of the four submatrices has non-zero elements con-
tributed by the data, i.e. arising from (weighted) prod-
ucts of the design matrices X and Z. For Cuu , Z′R−1Z is 
sparse, consisting of diagonal blocks of size q × q for N 
individuals. For traits that are not recorded, correspond-
ing rows and columns (of the diagonal blocks) have zero 
elements. The second part of Cuu , H−1 ⊗ �

−1
u  , contrib-

utes a q × q block for each non-zero element of H−1.
An alternative formulation is obtained by rewriting 

Eq. (1) as [10, 15]:

with IN denoting an identity matrix of size N, 
Z⋆ = Z(IN ⊗Q) and u⋆ =

(

IN ⊗Q−1
)

u . This gives 
Var(u⋆) = H⊗Q−1

�uQ
−T and it follows that 

ZVar(u)Z′ = Z⋆Var(u⋆)Z⋆′ . For computational effi-
ciency, we can choose Q so that Q−1

�uQ
−T = Iq . This is 

an equivalent model to Eq. (1) with the coefficient matrix 
in the pertaining MME:

The transformation can be thought of as transferring 
genetic links between traits from the part due to the 
covariance of the random effect to the ‘data part’ of the 
coefficient matrix. For single records per trait, each row 
of Z typically has a single non-zero element of unity. In 
contrast, Z⋆ contains up to q non-zero coefficients per 
row, positioned in the columns representing the respec-
tive animals’ genetic effects for the q traits. Thus, the 
first part of C⋆

uu is again block-diagonal for individuals, 
though — compared to Cuu – some additional non-zero 
elements arise for missing records. Similarly, some addi-
tional non-zero elements can be generated in C⋆

βu com-
pared to Cβu . The second component ( H−1 ⊗ Iq ) of C⋆

uu , 
however, is substantially sparser than its counterpart in 
Cuu , the more so the higher q and the denser H−1 . Here 

(2)

[

X′R−1X X′R−1Z

Z′R−1X Z′R−1Z+H−1 ⊗�
−1
u

][

β̂
û

]

=

[

X′R−1y

Z′R−1y

]

.

(3)

C =

[

X′R−1X X′R−1Z

Z′R−1X Z′R−1Z+H−1 ⊗ �
−1
u

]

=

[

Cββ Cβu

C′
βu Cuu

]

.

(4)
y = Xβ+ Z(IN ⊗Q)

(

IN ⊗Q−1
)

u + e = Xβ+ Z⋆u⋆ + e,

(5)

C⋆ =

[

X′R−1X X′R−1Z⋆

Z⋆′R−1X Z⋆′R−1Z⋆ +H−1 ⊗ Iq

]

=

[

Cββ C⋆
βu

C⋆
βu

′ C⋆
uu

]

.
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each non-zero off-diagonal element of H−1 contributes 
only q additional non-zero coefficients in Eq.  (5) com-
pared to q2 in the above Eq. (3).

Suitable choices for Q arise from the eigen-decomposi-
tion of the genetic covariance matrix, �u = E�E′ . For Q 
equal to the matrix of eigenvectors, E, u⋆ would be equal 
to the vector of genetic principal component scores, 
which can be scaled to variances of unity by setting 
Q = E�1/2 (with � the diagonal matrix of eigenvalues). 
Thus, we refer to Eq.  (4) as the ‘principal components’ 
model. In general, this form of Q has q2 non-zero ele-
ments. This can be reduced to q(q + 1)/2 by an orthog-
onal transformation to lower triangular form or, more 
generally, by setting Q to be a Cholesky factor of �u . 
Furthermore, the latter integrates well with REML imple-
mentations which often parameterise to estimate the 
elements of the Cholesky factor of covariance matrices 
rather than the covariance components directly.

REML estimation based on the transformation to prin-
cipal components is implemented in our mixed model 
package WOMBAT [16, 17] for selected models of 
analysis.

Average information REML
In general, REML estimation of variance components 
represents a non-linear optimisation problem that is 
solved iteratively. Let logL be the REML likelihood on 
the logarithmic scale and let θ , with elements θi , denote 
the vector of parameters to be estimated. The basic 
Newton(-Raphson) algorithm to update estimates from 
iterate k to iterate k + 1 is then:

where 0 < ω ≤ 1 is a scalar to modify step sizes where 
necessary to avoid ‘overshooting’. Terms s

(

θk
)

 and I
(

θk
)

 
represent the gradient vector and information matrix, 
respectively, both evaluated at θk . These have elements 
equal to the first and second partial derivatives of logL 
with respect to the parameters to be estimated, θi . Let θui 
and θei denote parameters modelling �u and �e , respec-
tively. For the AI-REML algorithm, the second deriva-
tives of logL are replaced with their counterparts 
considering the ‘data part’ of the likelihood only. For 
V = Var(y) linear in the vector of parameters, these are 
equal to the average of observed and expected informa-
tion [11] —  hence its name.

Details of the AI-REML algorithm for the standard 
model have been given by [11, 12] for univariate and [13, 
14] for multivariate analyses. In brief, the likelihood for 

(6)θk+1 = θk − ωI
(

θk
)−1

s
(

θk
)

,

Eq.  (1) and its first derivatives, written in terms of its 
MME (Eq. 2), are:

and

where tr denotes the matrix trace operator. The ‘data part’ 
of logL is the quadratic in the vector of observations, 
y′Py , where P = V−1 − V−1X

(

X′V−1X
)−

X′V−1 with 
V = Z(H⊗�u)Z

′ + R . Hence the elements of the aver-
age information matrix are proportional to [11]:

Corresponding quantities for the full rank PC model are 
[10]:

with V⋆ = Z⋆
(

H⊗ Iq
)

Z⋆′ + R and P⋆ as P but with V⋆ 
replacing V. Note that there are no explicit contributions 
involving �u in Eqs.  (11) and (12) as these are incorpo-
rated into C⋆.

Derivatives of y′P⋆y can be obtained without forming 
P⋆ or V⋆−1 explicitly. Selected details for the first deriv-
atives are given in “Appendix” and computing strategies 
to evaluate second derivatives are described by [10–13, 
18].

Early implementations of multivariate REML analyses 
applied a parameterisation to estimate the q(q + 1)/2 
distinct elements of each covariance matrix to be esti-
mated, �x , directly. However this proved problematic 
when employing Newton(-Raphson) type algorithms 

(7)

−2 logL = const + log |R| + log |H⊗ �u|

+ log |C| + y′Py,

(8)

−2
∂ logL

∂θi
=

∂ log |R|

∂θi
+

∂ log |H⊗ �u|

∂θi

+
∂ log |C|

∂θi
+

∂y′Py

∂θi

(9)

= tr

(

R−1 ∂R

∂θi

)

+ N tr

(

�
−1
u

∂�u

∂θi

)

+ tr

(

C−1 ∂C

∂θi

)

+ y′P
∂V

∂θi
Py,

(10)
∂2y′Py

∂θi∂θj
= y′P

∂V

∂θi
P
∂V

∂θj
Py.

(11)
−2 logL =const + log |R| + log

∣

∣H⊗ Iq
∣

∣

+ log
∣

∣C⋆
∣

∣+ y′P⋆y

(12)

−2
∂ logL

∂θi
= tr

(

R−1 ∂R

∂θi

)

+ tr

(

C⋆−1 ∂C
⋆

∂θi

)

+ y′P⋆ ∂V
⋆

∂θi
P⋆y

(13)
∂2y′P⋆y

∂θi∂θj
= y′P⋆ ∂V

⋆

∂θi
P⋆ ∂V

⋆

∂θj
P⋆y,
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(Eq.  6) to maximise logL as these did not guarantee 
estimates to be within the parameter space. Reparam-
eterising to the elements of the Cholesky factors of the 
�x teamed with taking logarithms of the diagonal ele-
ments resolved this problem and, moreover has been 
reported to yield good convergence rates [19, 20].

Material and methods
Data
We contrast sparsity patterns of the coefficient matrix 
and the resulting computational requirements for REML 
estimation for the MV and the PC parameterisation for 
two data sets. As only the structure of the resulting MME 
is of importance, only selected details are reported in the 
following.

Data set 1 included data for five correlated traits 
recorded on 21,000 individuals in eight generations, sim-
ulated using the software package AlphaSim, version 1.05 
[21]. There were 2100 and 3150 animals in generations 1 
to 4 and 5 to 8 which were progeny of 100 and 150 sires 
and 1000 and 1500 dams, respectively. To mimic a distri-
bution over small, fixed effects subclasses, records were 
randomly assigned to 301 ‘contemporary groups’ per 
generation. Genotypes were constructed by sampling 125 
quantitative trait loci and 32,000 single nucleotide poly-
morphisms (SNPs). Only marker information for 10%, 
30%, 40% and 50% of randomly chosen individuals in 
generations 5 to 8 was retained. This yielded 4121 geno-
typed and 16,879 non-genotyped animals.

Data set 2 consisted of data for four phenotypes 
recorded on sheep. There were 87,369 animals in the data 
with 81,130, 71,852, 51,628 and 7692 records for traits 
1 to 4, distributed over 4823, 6085, 4857 and 945 con-
temporary groups, respectively. Genotype information 
(33,887 markers) was available for 6112 individuals out of 
107,730 animals in the pedigree.

Analyses
Genomic relationship matrices (G) were built using 
Method 1 of Van Raden [22], eliminating SNPs with 
minor allele frequencies lower than 2% and centering 
allele counts using ‘observed’ frequencies. G was aligned 
with A22 , the submatrix of the numerator relationship 
matrix for genotyped animals, as described by Vitezica 
et al. [23]. This was used to set up H−1 , the inverse of the 
joint relationship matrix for genotyped and non-geno-
typed individuals [1].

Uni- and multivariate REML analyses for both param-
eterisations were carried out considering traits 1 to t 
for t = 1, . . . , q . Analyses employed the AI-REML algo-
rithm [12], using a supernodal approach [24] to factor 
and invert C or C⋆ . Here the term ‘supernodal’ describes 

a computing strategy which identifies dense diagonal 
blocks of the matrix and carries out the calculations 
required block-wise rather than row by row which allows 
exploitation of highly optimised (and parallelised) library 
routines. Analyses were parameterised to estimate the 
elements of the Cholesky factors of the covariance matri-
ces due to residuals and random effects fitted. Elapsed 
or ‘wall’ times were recorded for the set-up phase which 
included establishing a fill-in reducing reordering for the 
Cholesky factorisation of the coefficient matrix using 
an approximate minimum degree algorithm [25], sym-
bolic factorisation and the first likelihood evaluation, but 
excluded the time needed to compute H−1 . Times per 
iterate were obtained as the average over three or four 
AI-REML iterates which each involved a single likelihood 
evaluation only.

Analyses were carried out considering both the inverse 
of the joint relationship matrix and its counterpart based 
on pedigree information only ( A−1 ). For data set 1, a sim-
ple animal model was fitted. This included either overall 
means or contemporary groups as the only fixed effects. 
For data set 2, a simple animal model (including con-
temporary groups as fixed effects) was contrasted with a 
model fitting both genetic (107,330) and permanent envi-
ronmental maternal (20,487) effects as additional random 
effects. For this, direct and maternal genetic effects were 
treated as uncorrelated but assumed to have the same 
relationship matrix.

Computations were carried out on a desktop computer 
running Linux, fitted with an Intel I7-7820X processor 
with 8 cores rated at 3.6 Ghz and 64 GB of RAM. REML 
analyses were performed using our software package 
WOMBAT [16, 17] using up to 8 threads.

Results and discussion
Elapsed times for data set 1 are summarised in Table 1. 
As observed in previous investigations (unpublished), 
there was no discernible difference in execution times 
between MV and PC when using pedigree derived rela-
tionships only. With 8,564,005 non-zero elements in H−1 
(single triangle) to be processed  — compared to 77,616 
in A−1  –  computing times required for ssGREML anal-
yses were higher by orders of magnitude, more so than 
reported by [3]. In this scenario, however, the PC model 
performed consistently better both in terms of setup 
times and times per iterate and the more so the larger the 
number of traits considered and the less fixed levels were 
fitted.

Corresponding results for data set 2, together with 
the characteristics of the coefficient matrix in the MME, 
are in Table  2. Overall, timings exhibited a similar pat-
tern to that found for data set 1, although, with a much 
smaller proportion of genotyped animals, ratios of times 
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per iterate for MV over PC were somewhat lower (but 
still very worthwhile), especially for the analyses fitting 
maternal effects. Similarly with many contemporary 
groups fitted as fixed effects, set-up times for PC and MV 
differed much less than for the simulated data.

Differences in the numbers of non-zero elements in 
the coefficient matrices (NZ-C in Tables 1 and 2) for MV 
and PC, C and C⋆ respectively, increased markedly with 
the number of traits considered, highlighting their differ-
ences in sparsity. This was due to elements of H−1 con-
tributing only q non-zero coefficients each rather than q2 ; 
see Eq.  (5) versus Eq.  (3). As demonstrated earlier [15], 
the latter can markedly reduce the computational burden 
for multivariate ssGBLUP analyses where the MME are 
held in core.

However, during factorisation of these matrices, sub-
stantial numbers of new elements arose, commonly 
known as ‘fill-in’. Hence, the numbers of non-zero ele-
ments in the Cholesky factors of C and C⋆ – and thus the 
peak memory required  —  did no longer differ dramati-
cally (NZ-L in Tables 1 and 2). Moreover, this translated 
directly to the subset of elements of their inverses which 

needed to be calculated, and thus only contributed to a 
relatively small extent to the reduction in execution time 
per AI-REML iterate for PC over MV.

Each iterate of AI-REML requires calculation of the 
partial, first derivative of the likelihood function for each 
of the parameters θi to be estimated. Among other parts, 
this involves evaluation of tr

(

C−1 [∂C/∂θi]
)

 (MV) or 
tr
(

C⋆−1[∂C⋆/∂θi]
)

 (PC); see Eqs.  (9) and (12). For either 
model, this requires the inverse of the coefficient matrix 
which can be computationally demanding. An alternative 
used earlier was based on ‘automatic differentiation’ of 
the Cholesky factor of the coefficient matrix [20]. How-
ever, this was found to be no longer competitive when 
sparse matrix inversion was adapted to a supernodal 
approach and multi-threaded execution (unpublished) 
and is thus no longer recommended.

The formulation above implies that computing times 
for the first derivatives depend on the sparsity pattern 
of the derivatives of the coefficient matrix. This holds 
in particular for the q(q + 1)/2 parameters modelling 
�u , θui . For MV, ∂C/∂θui = H−1 ⊗ ∂�−1

U /∂θUi , i.e. only 
the second part of Cuu contributes non-zero coefficients 

Table 1  Elapsed times (seconds) for analyses of the simulated data

a Number of traits considered
b Number of equations in mixed model
c Time for set-up steps of REML analysis
d Standard multivariate parameterisation
e Principal components parameterisation
f Time per AI-REML iterate
g Ratio of times per iterate: MV/PC
h Number of non-zero elements in one triangle of the coefficient matrix; in millions
i Number of non-zero elements in the Cholesky factor of the coefficient matrix; in millions

Means only Contemporary groups

t
a 1 2 3 4 5 1 2 3 4 5

NEQb 21,001 42,002 63,003 84,004 105,005 23,408 46,816 70,224 93,632 117,040

Pedigree relationships only

 Setupc MVd 1 3 6 9 13 2 6 12 22 33

PCe 1 3 6 9 14 2 6 12 22 33

 Iteratef MV < 1 1 2 5 8 1 7 19 39 74

PC < 1 1 2 5 9 1 7 19 40 75

Pedigree and genomic relationships

 Setup MV 28 195 636 1459 2,836 30 203 643 1502 2896

PC 28 71 141 225 321 32 81 154 251 374

 Iterate MV 14 206 1209 4424 12,357 19 243 1282 4637 12,853

PC 8 34 87 171 292 12 56 134 262 549

Rg 1.8 6.1 13.9 25.9 42.3 1.6 4.3 9.6 17.7 28.0

 NZ-Ch MV 8.61 34.36 77.27 137.32 214.52 8.61 34.37 77.29 137.35 214.57

PC 8.61 17.28 26.00 34.80 43.66 8.61 17.29 26.03 34.84 43.71

 NZ-Li MV 11.77 47.02 105.74 187.93 293.61 21.06 83.98 188.91 335.79 524.63

PC 11.77 46.98 105.63 187.72 293.25 21.06 83.94 188.78 335.54 524.22
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and computations required are directly determined 
by the number of non-zero elements of H−1 . In con-
trast, for PC, submatrices C⋆

bu and the first part of C⋆
uu 

contribute non-zero elements to ∂C⋆/∂θui . As out-
lined above, the latter — Z⋆′R−1Z⋆ — is blockdiagonal 
for animals with blocks of size q × q (assuming that 
the levels of u are ordered by traits within animals). 
Moreover, the second part of C⋆

uu , H−1 ⊗ Iq , does not 
depend on the parameters to be estimated and thus 
its derivatives with respect to θui are zero. This means 
that computations for the calculation of the derivatives 
do not depend on the structure of H−1 , which explains 
the substantial reductions in elapsed time per iterate 
observed for the PC model. Corresponding arguments 
hold for the second component of the first derivatives 
that involves the coefficient matrix of the MME, namely 
∂y′Py/∂θui versus ∂y′P⋆y/∂θui (see “Appendix”).

Conclusions
We have demonstrated that a simple reparameterisa-
tion of the mixed model fitted can result in substan-
tially reduced computing times for ssGREML analyses, 
i.e. REML analyses accounting for genomic relation-
ships or involving similar, partially dense relationship 
matrices. It should be noted that this does not affect 
convergence behaviour, yielding the same estimates and 
changes in likelihood in each AI-REML iterate for both 
the PC and standard MV scale.

Clearly, the timings presented are highly implemen-
tation-specific. The REML software used did not pro-
vide any specific provisions to account for dense parts 
in H−1 , i.e. dealt with H−1 element by element. Com-
puting times could be improved, especially for the MV 
parameterisation, by arranging calculations so that 
the submatrix of H−1 for genotyped animals is held in 

Table 2  Elapsed times (seconds) together with the characteristics of the coefficient matrix in the mixed model equations for analyses 
of sheep data

a Number of traits considered
b Number of parameters to be estimated
c Number of equations in mixed model
d Time for set-up steps of REML analysis
e Standard multivariate parameterisation
f Principal components parameterisation
g Time per AI-REML iterate
h Ratio of times per iterate: MV/PC
i Number of non-zero elements in one triangle of the coefficient matrix; in millions
j Number of non-zero elements in the Cholesky factor of the coefficient matrix; in millions

Simple animal model Fitting maternal effects

ta 1 2 3 4 1 2 3 4

NPb 2 6 12 20 4 12 24 40

NEQc 112,533 226,368 338,955 447,630 239,309 482,364 723,606 960,498

Pedigree relationships only

 Setupd MVe 14 33 57 77 28 88 176 255

PCf 14 34 65 100 28 95 206 358

 Iterateg MV 6 17 31 46 13 47 100 171

PC 6 17 31 45 13 46 97 176

Pedigree and genomic relationships

 Setup MV 107 660 2093 4860 223 1290 4140 9158

PC 107 587 1784 3996 223 1137 3298 7126

 Iterate MV 52 644 3620 13,250 157 1783 9965 35,298

PC 33 121 278 497 109 405 940 1905

Rh 1.6 5.4 13.0 26.7 1.4 4.4 10.6 18.5

 NZ-Ci MV 19.2 76.4 171.6 304.5 38.6 153.6 344.7 610.6

PC 19.2 38.6 58.0 77.1 38.6 77.9 117.5 155.9

 NZ-Lj MV 29.2 109.2 249.0 437.5 86.2 346.9 781.3 1343.6

PC 29.2 111.6 249.8 421.3 86.2 345.5 747.5 1290.4
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a block, allowing it to be processed using highly opti-
mised library routines available for dense matrix cal-
culations. Other possible refinements of sparse matrix 
storage schemes are outlined, for instance, by Masuda 
et  al. [3] and are likely to facilitate further improve-
ments. Such measures may reduce the advantage of 
the PC model over the MV model. Nevertheless, the 
equivalent parameterisation described here extends 
the range of ssGREML analyses that are computation-
ally readily feasible and thus provides a useful addition 
to our armoury for quantitative genetic analyses in the 
genomic age.

Appendix
For MV, Py = R−1ê with ê = y − Xβ̂− Zû and 
Z′Py = (H−1 ⊗ �

−1
u )û [11]. This gives first derivatives 

(see also [13]):

Corresponding terms on the PC scale are:

It can be shown that:

i.e. that the derivatives of y′P⋆y with respect to θui can 
conveniently be evaluated alongside the respective terms 
tr
(

[∂C⋆/∂θui]C
⋆−1

)

 required in Eq. (12).
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(14)
∂y′Py

∂θui
= û′

(

H−1 ⊗�
−1
u

∂�u

∂θui
�

−1
u

)

û

(15)
∂y′Py

∂θei
= ê′R−1 ∂R

∂θei
R−1ê.

(16)

∂y′P⋆y

∂θui
= 2 ê⋆′R−1 ∂Z

⋆

∂θui
û⋆ with ê⋆ = y − Xβ̂− Z⋆û⋆

(17)
∂y′P⋆y

∂θei
= ê⋆′R−1 ∂R

∂θei
R−1ê⋆.

(18)

−
[

β̂
′... û⋆′

] ∂C⋆

∂θui

[

β̂
û⋆

]

= 2 ê⋆′R−1 ∂Z
⋆

∂θui
û⋆ − 2 y′R−1 ∂Z

⋆

∂θui
û⋆,
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