Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56239
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhan, Kamruzzamanen
dc.contributor.authorAkbar, M Alien
dc.date.accessioned2023-10-02T23:48:26Z-
dc.date.available2023-10-02T23:48:26Z-
dc.date.issued2023-06-
dc.identifier.citationPartial Differential Equations in Applied Mathematics, v.7, p. 1-9en
dc.identifier.issn2666-8181en
dc.identifier.urihttps://hdl.handle.net/1959.11/56239-
dc.description.abstract<p>The Bernoulli Sub-ODE approach is used in this study to look for comprehensive travelling wave solutions to the nonlinear evolution equations (NLEEs). The analysis in the present paper shows the existence of travelling waves for the time-regularized long-wave (TRLW) equation, the modified Korteweg–de Vries –Zakharov– Kuznetsov (mKdV–ZK) equation, and the (2+1)-dimensional Zoomeron equation. The outcomes demonstrate the richness of explicit solutions of the studied models. As a result, precise solitary wave solutions to the studied problems, such as kink waves, singular kink waves, dark soliton, and periodic waves are found. The phase plane is briefly examined after the determination of the Hamiltonian function. Using Maple 13, we validated the accuracy of the obtained solutions by reintroducing them into the original equation. We will demonstrate how the amplitudes and wave profiles are impacted by free parameters. In this article, we firmly establish that the wave amplitude varies as the free parameters change. It is demonstrated that the technique is efficient and applicable to several different NLEEs in mathematical physics.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofPartial Differential Equations in Applied Mathematicsen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleStudy of explicit travelling wave solutions of nonlinear evolution equationsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.padiff.2022.100475en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameKamruzzamanen
local.contributor.firstnameM Alien
local.profile.schoolSchool of Science and Technologyen
local.profile.emailkkamruzz@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber100475en
local.format.startpage1en
local.format.endpage9en
local.peerreviewedYesen
local.identifier.volume7en
local.access.fulltextYesen
local.contributor.lastnameKhanen
local.contributor.lastnameAkbaren
dc.identifier.staffune-id:kkamruzzen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56239en
local.date.onlineversion2022-12-14-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleStudy of explicit travelling wave solutions of nonlinear evolution equationsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKhan, Kamruzzamanen
local.search.authorAkbar, M Alien
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/1a8d8fc8-0acf-4030-91f7-46bd763bcffden
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/1a8d8fc8-0acf-4030-91f7-46bd763bcffden
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/1a8d8fc8-0acf-4030-91f7-46bd763bcffden
local.subject.for2020510301 Acoustics and acoustical devices; wavesen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/StudyKamruzzaman2023JournalArticle.pdfPublished Version3.61 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

13
checked on Feb 8, 2025

Page view(s)

174
checked on Nov 26, 2023

Download(s)

10
checked on Nov 26, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons