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A B S T R A C T

The Bernoulli Sub-ODE approach is used in this study to look for comprehensive travelling wave solutions to
the nonlinear evolution equations (NLEEs). The analysis in the present paper shows the existence of travelling
waves for the time-regularized long-wave (TRLW) equation, the modified Korteweg–de Vries –Zakharov–
Kuznetsov (mKdV–ZK) equation, and the (2+1)-dimensional Zoomeron equation. The outcomes demonstrate
the richness of explicit solutions of the studied models. As a result, precise solitary wave solutions to the
studied problems, such as kink waves, singular kink waves, dark soliton, and periodic waves are found. The
phase plane is briefly examined after the determination of the Hamiltonian function. Using Maple 13, we
validated the accuracy of the obtained solutions by reintroducing them into the original equation. We will
demonstrate how the amplitudes and wave profiles are impacted by free parameters. In this article, we firmly
establish that the wave amplitude varies as the free parameters change. It is demonstrated that the technique
is efficient and applicable to several different NLEEs in mathematical physics.
. Introduction

In multiple domains of mathematics, physics, chemistry, biology,
ngineering, and other applications, NLEEs are observed. Exact solu-
ions of NLEEs are crucial for understanding the qualitative character-
stics of numerous occurrences and processes across a range of natural
cience disciplines. The mechanisms of many complicated nonlinear
vents, including the spatial localization of transfer processes, the
xistence of peaking regimes, and the multiplicity or lack of steady
tates under varied conditions, are visually shown and unravelled by
xact solutions of nonlinear equations. The consistency and error esti-
ates of different numerical, asymptotic, and approximate analytical

echniques may be checked using even those unique precise solutions
hat lack a clear physical meaning. Different teams of mathematicians
nd physicists have successfully created numerous innovative meth-
ds to study the NLEEs, such as the (𝐺′∕𝐺) —expansion method,1–7

he Hirota’s bilinear transformation method,8–15 the modified simple
quation method,16–18 the tanh-function method,19 the Exp-function
ethod,20–22 the Jacobi elliptic function method,23 the homotopy per-

urbation method,24–26 the auxiliary equation mapping method,27–29

he direct algebraic method30–32 and so on.
The Korteweg–de Vries (KdV) equation describes weakly nonlinear

on-acoustic waves in a magnetized plasma.33,34 Calogero and De-
asperis studied a modification of the KdV equation and Schrödinger
quation to include solitons that travel at various speeds and discovered
relationship between their speed and polarization effects.31,33,35 This

∗ Corresponding author at: Department of Mathematics, Pabna University of Science and Technology, Pabna 6600, Bangladesh.
E-mail addresses: k.khanru@pust.ac.bd, kkamruzz@une.edu.au (K. Khan).

led to the emergence of two distinct types of solitons, one of which
was described as an accelerated soliton that boomeranged back with
the same speed in the distant past, and the other as being imprisoned
and oscillating in a spatial domain while changing direction repeatedly
around a fixed point.31,33,36 These were given the names Boomeron and
Trappon solitons, respectively, and the coupled Boomeron equation of
the following form was designed,31,36

{

𝑢𝑡 (𝑥, 𝑡) = �⃗� ⋅ �⃗�𝒙 (𝑥, 𝑡) ,
𝑣𝑡 (𝑥, 𝑡) = 𝑢𝑥 (𝑥, 𝑡) �⃗� + �⃗�

⋀

�⃗� (𝑥, 𝑡) + 2 ∫ ∞
𝑥 𝑑𝑥′�⃗�𝑥

(

𝑥′, 𝑡
)
⋀

[

�⃗�
(

𝑥′, 𝑡
)
⋀

�⃗�
]

,

(1.1)

where 𝑢 (𝑥, 𝑡) is a scalar field and �⃗� (𝑥, 𝑡) is a vector field, and �⃗� and �⃗�
are two vector quantities in three space dimensions.

After some manipulations, the so-called scalar Zoomeron equation
can be derived from the system of Eq. (1.1).31 Here we consider the
following (2+1)-dimensional Zoomeron equation,18

( 𝑢𝑥𝑦
𝑢

)

𝑡𝑡
−
( 𝑢𝑥𝑦

𝑢

)

𝑥𝑥
+ 2

(

𝑢2
)

𝑥𝑡 = 0, (1.2)

where 𝑢(𝑥, 𝑦, 𝑡) is the amplitude of the relative wave mode of a single
scalar field. The Zoomeron equation emerges from a range of scientific
fields, including laser physics, nonlinear optics, and fluid dynamics.

Another conventional model is the KdV–ZK equation. However,
for more intricate plasma compositions, the soliton character might
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change from compressive to rarefactive or vice versa at critical den-
sities and temperatures, the modified KdV–ZK equation is the alter-
native to be utilized. For the evolution of ion-acoustic disturbances
in a magnetized plasma with two negative ion components of dif-
ferent temperatures, the mKdV–ZK arises.34,37,38 In this article, our
second choice is to study the modified Korteweg–de Vries–Zakharov–
Kuznetsov (mKdV–ZK)equation, governing the oblique propagation of
nonlinear electrostatic modes,37,38 of the form

𝑢𝑡 + 𝛼𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝑢𝑥𝑦𝑦 + 𝑢𝑥𝑧𝑧 = 0., (1.3)

where 𝛼 is a nonzero parameter.
Finally, we will study the following time-regularized long-wave

(TRLW) equation, another alternative of the KdV equation,39

𝑢𝑡 + 𝑢𝑥 + 𝛼𝑢𝑢𝑥 + 𝑢𝑥𝑡𝑡 = 0, (1.4)

which was proposed by Joseph and Egri40 and Jeffrey.41

The objective of this paper is to find the exact solutions then the
solitary wave solutions for the (2+1)-dimensional Zoomeron equation,
he mKdV–ZK equation, and the TRLW equation through the Bernoulli
ub-ODE method. Our other goal is to examine the effect of the free
arameters on the obtained travelling wave solutions.

The article is arranged as follows: In Section 2, the Bernoulli Sub-
DE method42–46 is discussed. In Section 3, we apply this method to the

nonlinear evolution equations pointed out above. In Section 4, results
and discussion and Section 5 conclusions are given.

2. Description of the method

In this section, we describe the Bernoulli Sub-ODE method for
inding travelling wave solutions of NLEEs. Suppose that a nonlinear
artial differential equation, say in two independent variables 𝑥 and 𝑡

is given by

R(𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑡𝑡, 𝑢𝑥𝑥, 𝑢𝑥𝑡,…………) = 0, (2.1)

where 𝑢(𝜉) = 𝑢(𝑥, 𝑡) is an unknown function, R is a polynomial of 𝑢(𝑥, 𝑡)
and its partial derivatives in which the highest order derivatives and
nonlinear terms are involved. In the following, we give the main steps
of this method.42,47

Step 1. Combining the independent variables 𝑥 and 𝑡 into one
variable 𝜉 = 𝑥 ± 𝜔𝑡, we suppose that

𝑢(𝜉) = 𝑢(𝑥, 𝑡), 𝜉 = 𝑥 ± 𝜔𝑡. (2.2)

The travelling wave transformation Eq. (2.2) permits us to transform
Eq. (2.1) to the following ODE:

R(𝑢, 𝑢′, 𝑢′′,………) = 0, (2.3)

where R is a polynomial in 𝑢(𝜉) and its derivatives, while 𝑢′(𝜉) = 𝑑𝑢
𝑑𝜉 ,

𝑢′′(𝜉) = 𝑑2𝑢
𝑑𝜉2

and so on.
Step 2. We suppose that Eq. (2.3) has the formal solution

𝑢(𝜉) =
𝑛
∑

𝑖=0
𝑎𝑖𝐺

𝑖, (2.4)

where 𝐺 = 𝐺(𝜉) satisfy the equation
′ + 𝜆𝐺 = 𝜇𝐺2, (2.5)

in which 𝑎𝑖(−𝑛 ≤ 𝑖 ≤ 𝑛; 𝑛 ∈ 𝑁) are constants to be determined later,
and 𝜆 ≠ 0.

When 𝜇 ≠ 0, Eq. (2.5) is the type of Bernoulli equation, we can
btain the solution as

= 𝜆
𝜇 + 𝜆𝐸 exp(𝜆𝜉)

, (2.6)

where 𝐸 is an arbitrary constant.
When 𝜇 = 0, Eq. (2.6) reduces to

𝐺 = 1 exp(−𝜆𝜉). (2.7)

𝐸

2

Setting 𝐸 = 𝜇
𝜆 into Eq. (2.6), we get

𝐺 = − 𝜆
2𝜇

(

tanh
(𝜆
2
𝜉
)

− 1
)

. (2.8)

etting 𝐸 = − 𝜇
𝜆 into Eq. (2.6), we get

𝐺 = − 𝜆
2𝜇

(

coth
(𝜆
2
𝜉
)

− 1
)

. (2.9)

Step 3. The positive integer 𝑛 can be determined by considering the
homogeneous balance between the highest order derivatives and the
nonlinear terms appearing in Eq. (2.1) or Eq. (2.3). Moreover precisely,
we define the degree of 𝑢(𝜉) as 𝐷(𝑢(𝜉)) = 𝑛 which gives rise to the degree
of other expressions as follows:

𝐷
(

𝑑𝑞𝑢
𝑑𝜉𝑞

)

= 𝑛 + 𝑞,𝐷
(

𝑢𝑝
(

𝑑𝑞𝑢
𝑑𝜉𝑞

)𝑠)

= 𝑛𝑝 + 𝑠(𝑛 + 𝑞). (2.10)

herefore, we can find the value of 𝑛 in Eq. (2.4), using Eq. (2.10).
Step 4. We substitute Eq. (2.4) into Eq. (2.3) using Eq. (2.5) and

then collect all terms of the same powers of 𝐺(𝜉) together, then set
each coefficient of them to zero to yield a system of algebraic equations,
solving this system we obtain the values of 𝑎𝑖 and 𝜔.

Finally, substituting 𝑎𝑖, 𝜔 and Eqs. (2.8)–(2.9) into Eq. (2.4) we
obtain the exact travelling wave solutions of Eq. (2.1).

3. Application

3.1. The (2+1)-dimensional Zoomeron equation

In this sub-section, we will exert the Bernoulli Sub-ODE method to
solve the (2+1)-dimensional Zoomeron equation in the form,
( 𝑢𝑥𝑦

𝑢

)

𝑡𝑡
−
( 𝑢𝑥𝑦

𝑢

)

𝑥𝑥
+ 2

(

𝑢2
)

𝑥𝑡 = 0, (3.1)

where 𝑢(𝑥, 𝑦, 𝑡) is the amplitude of the relative wave mode.
The travelling wave transformation equation 𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝜉), 𝜉 =

𝑥 − 𝑐𝑦 − 𝜔𝑡 transform Eq. (3.1) to the following ordinary differential
equation:

𝜔2
(

−𝑐𝑢′′
𝑢

)′′
−
(

−𝑐𝑢′′
𝑢

)′′
− 2𝜔

(

𝑢2
)′′ = 0. (3.2)

Now integrating Eq. (3.2) with respect to 𝜉 twice, by setting the first
integration constant equal to zero for convenience, we obtain the
following nonlinear ordinary differential equation

𝑐
(

1 − 𝜔2) 𝑢′′ − 2𝜔𝑢3 + 𝑅𝑢 = 0, (3.3)

where 𝑅 is a constant of integration.

3.1.1. Phase plane analysis of the (2+1)-dimensional Zoomeron equation
To proceed with phase plane analysis for the zoomeron equation,

we introduce 𝑋 = 𝑢, 𝑌 = 𝑋′. Now we may re-write Eq. (3.3) as a
first-order dynamical system of the form,

⎧

⎪

⎨

⎪

⎩

𝑑𝑋
𝑑𝜉 = 𝑌 ,

𝑑𝑌
𝑑𝜉 = 1

𝑐(1−𝜔2)
(

2𝜔𝑋3 − 𝑅𝑋
)

,
(3.3a)

hich defines the well-known phase plane associated with travelling
ave solutions of the (2+1)-dimensional zoomeron equation.

The ordinary differential equation Eq. (3.3) or Eq. (3.3a) comes
from the Hamiltonian

𝐻 (𝑋, 𝑌 ) = 𝑌 2

2
− 1

𝑐
(

1 − 𝜔2
)

(𝜔
2
𝑋4 − 𝑅

2
𝑋2

)

, (3.3b)

y using Hamilton canonical equations 𝑋′ = 𝜕𝐻
𝜕𝑌 and 𝑌 ′ = − 𝜕𝐻

𝜕𝑋 .
Three equilibrium points of the dynamical system (3.3a) are

(

±
√

𝑅
2𝜔 , 0

)

and (0, 0). For values of 𝑐 = 0.25, 𝜔 = 0.25 and 𝑅 = 1, the
equilibrium points 0, 0 , −1.4142, 0 and 1.4142, 0 represent a circle,
( ) ( ) ( )
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Fig. 1a. Hamiltonian function 𝐻(𝑋, 𝑌 ) of the Zoomeron equation corresponds to
q. (3.3b).

Fig. 1b. Phase plane visualization of the system of ODEs (3.3a) for the values of
𝑐 = 0.25, 𝜔 = 0.25 and 𝑅 = 1. Three equilibrium points are (0, 0) , (−1.4142, 0) and
(1.4142, 0).

Fig. 2a. Hamiltonian function 𝐻(𝑋, 𝑌 ) of the Zoomeron equation corresponds to
q. (3.3b).

addle point, and saddle point, respectively (See Fig. 1). On the other
and, for the values of 𝑐 = 0.25, 𝜔 = −0.25 and 𝑅 = −1, the equilibrium
oints (0, 0) , (−1.4142, 0) and (1.4142, 0) represent saddle point, circle,

and circle, respectively (See Fig. 2).

3.1.2. Travelling wave analysis of the (2+1)-dimensional Zoomeron equa-
tion

Now, balancing the highest-order derivative term 𝑢′′ and the non-
linear term 𝑢3 from Eq. (3.3), yields 3𝑛 = 𝑛 + 2 which gives 𝑛 =
1.

Hence for 𝑛 = 1 Eq. (2.4) reduces to

𝑢(𝜉) = 𝑎0 + 𝑎1𝐺(𝜉), 𝑎1 ≠ 0. (3.4)

Substitute Eq. (3.4) along with Eq. (2.5) into Eq. (3.3). As a result of this
substitution, we get a polynomial of (𝐺(𝜉))𝑗 . From these polynomials,
we equate the coefficients of (𝐺(𝜉))𝑗 and setting them to zero, we get
the following system of algebraic equations.

𝐺0 ∶ − 2𝜔𝑎 3 − 𝑅𝑎 = 0.
0 0

3

Fig. 2b. Phase plane visualization of the system of ODEs (3.3a) for the values of
𝑐 = 0.25, 𝜔 = −0.25 and 𝑅 = −1. Three equilibrium points are (0, 0) , (−1.4142, 0) and
(1.4142, 0).

∶ − 𝑐𝜔2𝜆2𝑎1 − 6𝜔𝑎02𝑎1 − 𝑅𝑎1 + 𝑐𝑎1𝜆
2 = 0.

2 ∶ 3𝑐𝜔2𝜇𝜆𝑎1 − 6𝜔𝑎0𝑎12 − 3𝑐𝜇𝜆𝑎1 = 0.
3 ∶ 2𝑐𝜇2𝑎1 − 2𝜔𝑎13 − 2𝑐𝜇2𝜔2𝑎1 = 0.

olving the above equations for 𝑎0, 𝑎1, 𝑅 and 𝜔, yields

= −
𝜔𝑎21

𝜇2(𝜔2 − 1)
, 𝜆 = ± 𝜇

𝑎1

√

(

− 2𝑅
𝜔

)

, 𝑎0 = 𝐼
√

𝑅
2𝜔 .

Now substituting the values 𝑅, 𝑐, 𝜔, 𝑎0 and 𝑎1 into Eq. (3.4), along with
q. (2.6), yields

(𝜉) = −1
2
𝑎1𝜆
𝜇

+ 𝑎1

(

𝜆
𝜇 + 𝜆𝐸 exp(𝜆𝜉)

)

, (3.5)

here 𝜉 = 𝑥 − 𝑐𝑦 − 𝜔𝑡.
Now substituting the values 𝑐, 𝜆, 𝑎0 into Eq. (3.4), along with Eqs.

2.8) and (2.9), yields

1 (𝑥, 𝑦, 𝑡) = ±𝑖
√

𝑅
2𝜔

tanh

(

𝑖𝜇
𝑎1

√

𝑅
2𝜔

(𝑥 − 𝑐𝑦 − 𝜔𝑡)

)

. (3.6)

2 (𝑥, 𝑦, 𝑡) = ±𝑖
√

𝑅
2𝜔

coth

(

𝑖𝜇
𝑎1

√

𝑅
2𝜔

(𝑥 − 𝑐𝑦 − 𝜔𝑡)

)

. (3.7)

f 𝑅
2𝜔 < 0, then Eqs. (3.6) and (3.7) provide the following hyperbolic

olutions:

3 (𝑥, 𝑦, 𝑡) = ±
√

𝑅
2𝜔

tanh

(

𝜇
𝑎1

√

𝑅
2𝜔

(𝑥 − 𝑐𝑦 − 𝜔𝑡)

)

. (3.6a)

4 (𝑥, 𝑦, 𝑡) = ±
√

𝑅
2𝜔

coth

(

𝜇
𝑎1

√

𝑅
2𝜔

(𝑥 − 𝑐𝑦 − 𝜔𝑡)

)

. (3.7a)

If 𝑅
2𝜔 > 0, then Eqs. (3.6) and (3.7) provide the following trigono-

metric solutions:

𝑢5 (𝑥, 𝑦, 𝑡) = ±
√

𝑅
2𝜔

tan

(

𝜇
𝑎1

√

𝑅
2𝜔

(𝑥 − 𝑐𝑦 − 𝜔𝑡)

)

. (3.6b)

6 (𝑥, 𝑦, 𝑡) = ±
√

𝑅
2𝜔

cot

(

𝜇
𝑎1

√

𝑅
2𝜔

(𝑥 − 𝑐𝑦 − 𝜔𝑡)

)

. (3.7b)

See Figs. 3 and 4.

.2. The modified KdV–Zakharov–Kuznetsov equation

In this sub-section, we will exert the Bernoulli Sub-ODE method to
ind the exact solutions and then the solitary wave solutions to the
odified KdV–Zakharov–Kuznetsov (mKdV–ZK) equation,

𝑡 + 𝛼𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝑢𝑥𝑦𝑦 + 𝑢𝑥𝑧𝑧 = 0. (3.8)

where 𝛼 is a nonzero parameter.
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𝑢

Fig. 3. The kink profile of the Zoomeron equation corresponds to the solution 𝑢3(𝑥, 0, 𝑡) in Eq. (3.6a) for the values of 𝜔 = 0.75, 𝑅 = 0.25, 𝑎1 = 0.5, 𝜆 = 1, 𝜇 = 2, 𝑦 =0, 𝑐 = 2.
Fig. 4. The periodic profile of the Zoomeron equation corresponds to the solution 𝑢5(𝑥, 0, 𝑡) in Eq. (3.6b) for the values of 𝜔 = 1.2, 𝑅 = 1.25, 𝑐 = 1, 𝑎1 = 1.5, 2𝜇 = 2, 𝑦 = 1.

w
w

f

𝐻

The travelling wave transformation,

(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝜔𝑡, (3.9)

transforms Eq. (3.8) to the following ODE:

−𝜔𝑢′ + 𝛼𝑢2𝑢′ + 3𝑢′′′ = 0. (3.10)

Eq. (3.10) is integrable, therefore, integrating with respect to 𝜉, setting
the constant of integration to zero for convenience, we obtain

3𝑢′′ − 𝜔𝑢 + 𝛼
3
𝑢3 = 0. (3.11)

3.2.1. Phase plane analysis of the mKdV-ZK equation
To proceed with phase plane analysis for the mKdV–ZKequation,

we introduce 𝑋 = 𝑢, 𝑌 = 𝑋′. Now we may re-write Eq. (3.11) as a
 b

4

first-order dynamical system of the form,

⎧

⎪

⎨

⎪

⎩

𝑑𝑋
𝑑𝜉 = 𝑌 ,

𝑑𝑌
𝑑𝜉 = 𝜔

3𝑋 − 𝛼
9𝑋

3,
(3.11a)

hich defines the well-known phase plane associated with travelling
ave solutions of the mKdV–ZKequation.

The ordinary differential equation Eq. (3.11) or Eq. (3.11a) comes
rom the Hamiltonian

(𝑋, 𝑌 ) = 𝑌 2

2
− 𝜔

6
𝑋2 + 𝛼

36
𝑋4, (3.11b)

y using Hamilton canonical equations 𝑋′ = 𝜕𝐻 and 𝑌 ′ = − 𝜕𝐻 .
𝜕𝑌 𝜕𝑋
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Fig. 5. Phase plane visualization of the system of ODEs (3.11a) for the values of
= 0.1, 𝜔 = 1. Three equilibrium points are (0, 0) , (−5.4772, 0) and (5.4772, 0).

Fig. 6. Phase plane visualization of the system of ODEs (3.11a) for the values of
= −0.1, 𝜔 = −1. Three equilibrium points are (0, 0) , (−5.4772, 0) and (5.4772, 0).

Three equilibrium points of the dynamical system Eq. (3.11a) are
±
√

3𝜔
𝛼 , 0

)

and (0, 0). For values of 𝛼 = 0.1, 𝜔 = 1, the equilibrium
points (0, 0) , (−5.4772, 0) and (5.4772, 0) represent a circle, saddle point,
and circle, respectively (See Fig. 5). On the other hand, for the values
of 𝛼 = −0.1, 𝜔 = −1, the equilibrium points (0, 0) , (−5.4772, 0) and
(5.4772, 0) represent saddle point, circle, and saddle point, respectively
(See Fig. 6).

3.2.2. Solitary wave analysis of the mKdV-ZK equation
Balancing the highest-order derivative term 𝑢′′ and the nonlinear

term 𝑢3 from Eq. (3.10), yields 3𝑛 = 𝑛 + 2 which gives 𝑛 = 1.
As a result, the solution of Eq. (3.8) takes the form,

𝑢(𝜉) = 𝑎0 + 𝑎1𝐺(𝜉), 𝑎1 ≠ 0. (3.12)

Substitute Eq. (3.12) along with Eq. (2.5) into Eq. (3.11), and we get a
polynomial in 𝐺 (𝜉)
(

6𝜇2𝑎1 +
1
3
𝛼𝑎1

3
)

𝐺(𝜉)3 +
(

𝛼𝑎0𝑎1
2 − 9𝜇𝜆𝑎1

)

𝐺(𝜉)2

+
(

−𝜔𝑎1 + 3𝑎1𝜆2 + 𝛼𝑎0
2𝑎1

)

𝐺(𝜉) + 1
3
𝛼𝑎0

3 − 𝜔𝑎0 = 0.

From these polynomials, we equate the coefficients of (𝐺(𝜉))𝑗 and
etting them to zero, we get the following system of algebraic equa-
ions.
0 ∶ 1

3
𝛼𝑎0

3 − 𝜔𝑎0 = 0.

𝐺∶ − 𝜔𝑎1 + 3𝑎1𝜆2 + 𝛼𝑎0
2𝑎1 = 0.

𝐺2 ∶ 𝛼𝑎0𝑎12 − 9𝜇𝜆𝑎1 = 0.

𝐺3 ∶ 6𝜇2𝑎1 +
1
3
𝛼𝑎1

3 = 0.

𝑢

5

Solving the above equations for 𝑎0, 𝑎1 and 𝜔, yields

𝜔 = −3
2
𝜆2, 𝑎0 = ± 3𝜆

√

−2𝛼
, 𝑎1 = ∓

6𝜇
√

−2𝛼
.

Now substituting the values 𝑐, 𝜔, 𝑎0 and 𝑎1 along with Eq. (2.6),
ields

(𝜉) = ± 3𝜆
√

−2𝛼
∓

6𝜇
√

−2𝛼

(

𝜆
𝜇 + 𝜆𝐸 exp(𝜆𝜉)

)

, (3.13)

where 𝜉 = 𝑥 + 𝑦 + 𝑧 + 3
2𝜆

2𝑡.
Since 𝐸 is an arbitrary constant and 𝜇, 𝜆 are free parameters, hence

Setting 𝐸 = 𝜇
𝜆 into Eq. (3.13), we obtain

𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = ± 3𝜆
√

−2𝛼
tanh

(𝜆
2
(𝑥 + 𝑦 + 𝑧 + 3

2
𝜆2𝑡)

)

. (3.14)

Again setting 𝐸 = − 𝜇
𝜆 into Eq. (3.13), we obtain

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = ± 3𝜆
√

−2𝛼
coth

(𝜆
2
(𝑥 + 𝑦 + 𝑧 + 3

2
𝜆2𝑡)

)

. (3.15)

ee Figs. 7 and 8.

.3. Time-regularized long-wave (TRLW) equation

Consider the TRLW Equation in the form:

𝑡 + 𝑢𝑥 + 𝛼𝑢𝑢𝑥 + 𝑢𝑥𝑡𝑡 = 0. (3.16)

where 𝛼 is a nonzero parameter.
The travelling wave transformation

𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 − 𝜔𝑡, (3.17)

transforms the Eq. (3.16) to the following ODE:

(1 − 𝜔) 𝑢′ + 𝛼𝑢𝑢′ + 𝜔2𝑢′′′ = 0. (3.18)

Eq. (3.18) is integrable, therefore, integrating with respect to 𝜉, neglect-
ing the constant of integration, we obtain

𝜔2𝑢′′ + (1 − 𝜔) 𝑢 + 𝛼
2
𝑢2 = 0. (3.19)

3.3.1. Phase plane analysis of the TRLW equation
To proceed with phase plane analysis for the TRLW equation, we

introduce 𝑋 = 𝑢, 𝑌 = 𝑋′. Now we may re-write Eq. (3.11) as a
first-order dynamical system of the form,

⎧

⎪

⎨

⎪

⎩

𝑑𝑋
𝑑𝜉 = 𝑌 ,

𝑑𝑌
𝑑𝜉 = 𝜔−1

𝜔2 𝑋 − 𝛼
2𝜔2 𝑋2,

(3.19a)

which defines the well-known phase plane associated with travelling
wave solutions of the TRLW equation.

The ordinary differential equation Eq. (3.11) or Eq. (3.11a) comes
from the Hamiltonian

𝐻 (𝑋, 𝑌 ) = 𝑌 2

2
− 𝜔 − 1

𝜔2
𝑋 + 𝛼

2𝜔2
𝑋2, (3.19b)

y using Hamilton canonical equations 𝑋′ = 𝜕𝐻
𝜕𝑌 and 𝑌 ′ = − 𝜕𝐻

𝜕𝑋 .
Two equilibrium points of the dynamical system (3.19a) are

(

2𝜔(𝜔−1)
𝛼 , 0

)

and (0, 0).
For values of 𝛼 = 0.5, 𝜔 = 0.30 two equilibrium points are (0, 0), and

−2.8, 0), respectively (See Fig. 9).

.3.2. Solitary wave analysis of the TRLW equation
Balancing the linear term 𝑢′′ and the nonlinear term 𝑢2 from

q. (3.18), yields 𝑛 = 2.
As a result, the solution of Eq. (3.16) takes the form,

(𝜉) = 𝑎 + 𝑎 𝐺(𝜉) + 𝑎 𝐺(𝜉) 2 , 𝑎 ≠ 0. (3.20)
0 1 2 ( ) 2
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𝛼

Fig. 7. The kink solution profile of the mKdV–ZK equation corresponds to the positive solution in Eq. (3.14) for the values of 𝑦 = 𝑧 = 0, 𝛼 = −0.1, 𝜆 =
√

2
3
. Wave is propagating in

the negative 𝑥-direction with constant speed 𝜔 = −1.
Fig. 8. Alphabetic-shaped soliton profile of the mKdV–ZK equation corresponds to the positive solution in Eq. (3.14) for the values of 𝑦 = 0, 𝑧 = −2, 𝛼 = 0.1, 𝜆 =
√

2
3
. Wave is
propagating in the negative 𝑥-direction with constant speed 𝜔 = −1.

F
t

𝐺

𝐺

𝐺

Fig. 9. Phase plane visualization of the system of ODEs (3.19a) for the values of

= 0.5, 𝜔 = 0.30. Three equilibrium points are (0, 0), and (−2.8, 0). 𝐺

6

Substituting Eq. (3.20) along with Eq. (2.5) into Eq. (3.19), we get the
following polynomial
(

6𝜔2𝑎2𝜇
2 + 1

2
𝛼𝑎2

2
)

𝐺(𝜉)4 +
(

−10𝜔2𝑎2𝜇𝜆 + 2𝜔2𝑎1𝜇
2 + 𝛼𝑎1𝑎2

)

𝐺(𝜉)3

+
(

−𝜔𝑎2 + 𝑎2 − 3𝜔2𝑎1𝜇𝜆 + 1
2
𝛼𝑎1

2 + 𝛼𝑎0𝑎2 + 4𝜔2𝑎2𝜆
2
)

𝐺(𝜉)2

+
(

𝑎1 + 𝛼𝑎0𝑎1 + 𝜔2𝑎1𝜆
2 − 𝜔𝑎1

)

𝐺(𝜉) + 1
2
𝛼𝑎0

2 + 𝑎0 − 𝜔𝑎0 = 0. (3.21)

rom Eq. (3.21), we equate the coefficients of (𝐺(𝜉))𝑗 and setting them
o zero, we obtain the following system of algebraic equations.

0 ∶ 1
2
𝛼𝑎0

2 + 𝑎0 − 𝜔𝑎0 = 0.

∶ 𝑎1 + 𝛼𝑎0𝑎1 + 𝜔2𝑎1𝜆
2 − 𝜔𝑎1 = 0.

2 ∶ − 𝜔𝑎2 + 𝑎2 − 3𝜔2𝑎1𝜇𝜆 + 1
2
𝛼𝑎1

2 + 𝛼𝑎0𝑎2 + 4𝜔2𝑎2𝜆
2 = 0.

3 ∶ − 10𝜔2𝑎 𝜇𝜆 + 2𝜔2𝑎 𝜇2 + 𝛼𝑎 𝑎 = 0.
2 1 1 2
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n

𝐺

S

𝑢

𝑢

Fig. 10. The dark soliton profile of the TRLW equation corresponds to the solution in Eq. (3.23) for the values of 𝑦 = 0, 𝑧 = −2, 𝜔 = −0.5, 𝛼 = 0.1, 𝜆 = 1. Wave is propagating in the
egative 𝑥-direction with constant speed 𝜔 = −1.
n
a
𝜔
S

4

i
t
t
w
e
s
s
v

𝜇

4 ∶ 6𝜔2𝑎2𝜇
2 + 1

2
𝛼𝑎2

2 = 0.

olving the above equations for 𝑎0, 𝑎1, 𝑎2 and 𝜔, yields

𝜔 = 𝜔, 𝑎0 = −
(

𝜔2𝜆2 − 𝜔 + 1
𝛼

)

, 𝑎1 =
12𝜔2𝜇𝜆

𝛼
, 𝑎2 = −

12𝜔2𝜇2

𝛼
.

Now substituting the values 𝜔, 𝜆, 𝜇, 𝑎0, 𝑎1 and 𝑎2 into Eq. (3.20), along
with Eq. (2.6), yields

𝑢(𝜉) = −
(

𝜔2𝜆2 − 𝜔 + 1
𝛼

)

+
12𝜔2𝜇𝜆

𝛼

(

𝜆
𝜇 + 𝜆𝐸 exp(𝜆𝜉)

)

− −
12𝜔2𝜇2

𝛼

(

𝜆
𝜇 + 𝜆𝐸 exp(𝜆𝜉)

)2
, (3.22)

where 𝜉 = 𝑥 − 𝜔𝑡.
According to the parallel course of action discussed in Sections 3.1

and 3.2, setting 𝐸 = 𝜇
𝜆 into Eq. (3.22), we obtain

(𝑥, 𝑡) = −
(1 − 𝜔

𝛼

)

− 𝜔2𝜆2

𝛼

(

1 − 3sech 2
(𝜆
2
(𝑥 − 𝜔𝑡)

))

. (3.23)

Again setting 𝐸 = − 𝜇
𝜆 into Eq. (3.22), we obtain

(𝑥, 𝑡) = −
(1 − 𝜔

𝛼

)

− 𝜔2𝜆2

𝛼

(

1 + 3 cscℎ2
(𝜆
2
(𝑥 − 𝜔𝑡)

))

. (3.24)

See Fig. 10.

4. Results and discussion

4.1. Physical explanations of the Zoomeron equation

We will now examine the impact of free parameters on the kink/
shock type solitary wave profile that corresponds to the solution (3.6a)
of the Zoomeron equation. We will exclude the physical explanations
of the mKdV–ZK and TRLW models for convenience.

Figs. 11–14 show the diversification of Kink-type solitary wave
profiles because of the influence of the free parameters. Figs. 11 and 12
show the variation of the wave profile without changing the amplitude.
In Fig. 11, Kink wave profiles are depicted for a set of values of 𝜇 =
{0.1, 0.25, 0.5, 1, 2, 3} and 𝜔 = 0.75, 𝑅 = 0.25, 𝑐 = 2, 𝑎1 = 0.5, 𝑦 = 0.
In Fig. 12, Kink wave profiles are portrayed for a set of values of
𝑎1 = {0.25, 0.5, 1, 2, 3} and 𝜔 = 0.75, 𝑅 = 0.25, 𝑐 = 2, 𝜇 = 1, 𝑦 = 0.
Snapshots are taken at time 𝑡 = 4.
7

Fig. 11. The kink wave profile of the Zoomeron equation corresponds to Eq. (3.6a).

Figs. 13 and 14 represent the variation of the kink wave amplitude
due to the parametric effect. The numerical analysis represented in
Figs. 13 and 14, suggests that wave amplitude increases with the
increase of the parameter 𝑅 and wave speed 𝜔. This completely char-
acterizes the effect of parameters on wave amplitude. Fig. 13 illustrates
the amplitude variation of the Kink wave for the values of 𝑅 =
{0.25, 0.5, 1, 2, 3} and 𝜇 = 1, 𝜔 = 1, 𝑐 = 2, 𝑎1 = 2, 𝑦 = 0. The
umerical simulations presented in Fig. 14 have demonstrated the
mplitude variation of the Kink wave for the values of wave speed
= {0.25, 0.5, 1, 2, 3} and 𝜇 = 1, 𝑅 = 0.25, 𝑐 = 2, 𝑎1 = 0.5, 𝑦 = 0.

napshots are taken at time 𝑡 = 4.

.2. Comparisons

Comparison with the modified simple equation: Using the mod-
fied simple equation (MSE) approach, Khan and Akbar18 investigated
he (2+1)-dimensional Zoomeron equation and discovered four solu-
ions (Please see the Appendix). On the other hand, in this article,
e also have found four solutions to the (2+1)-dimensional Zoomeron
quation using the Bernoulli Sub-ODE approach. The fact that all the
olutions produced here using the Bernoulli Sub-ODE approach corre-
pond with known solutions derived by Khan and Akbar18 for specific
alues of the parameters is noteworthy. If we set 𝑐 = 1, and 𝑎1 =
√

(

𝜔2−1
𝜔

)

in our solutions Eqs. (3.6a) to (3.7b) for the Zoomeron
equation, then our solutions coincide with the solutions obtained by
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d

𝑢

𝑢

𝑢

𝑢

Fig. 12. The kink wave profile of the Zoomeron equation corresponds to Eq. (3.6a).

Fig. 13. The kink wave profile of the Zoomeron equation corresponds to Eq. (3.6a).

Fig. 14. The kink wave profile of the Zoomeron equation corresponds to Eq. (3.6a).

Khan and Akbar.18 Analogously, we can compare the results of the
other two models which are omitted for convenience.

5. Conclusion

The modified KdV–Zakharov–Kuznetsov (mKDV–ZK) equation, the
TRLW equation, and the (2+1)-dimensional Zoomeron equation have
all been solved in this study using the Bernoulli Sub-ODE approach.
Consequently, accurate forms of solitary waves, including kink waves,
singular kink waves, and dark soliton are discovered. The Hamiltonian
function is determined, and the phase plane is analysed briefly. We
ensured the correctness of the solutions with the help of Maple 13 by
reintroducing them into the original equation. We thoroughly demon-
strated that the wave profile varies as the parameters change. Our
numerical simulation demonstrates that changing a parameter can have
a variety of impacts, including a change in amplitude that affects the
dynamics of solitary waves. The directness, effectiveness, and applica-
bility of the Bernoulli Sub-ODE approach for solving several additional
NLEEs in mathematical physics and engineering are demonstrated. The
Bernoulli Sub-ODE approach has a larger range of applications due to
its consistency.
8
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Appendix

Khan and Akbar18 found the following solution of the (2+1)-
imensional Zoomeron equation by using the MSE method:

1,2 (𝑥, 𝑦, 𝑡) = ±
√

𝑅
2𝜔

tanh
(√

𝑅
2(𝜔2 − 1)

(𝑥 − 𝑐𝑦 − 𝜔𝑡)
)

. (A.1)

3,4 (𝑥, 𝑦, 𝑡) = ±
√

𝑅
2𝜔

coth
(√

𝑅
2(𝜔2 − 1)

(𝑥 − 𝑐𝑦 − 𝜔𝑡)
)

. (A.2)

5,6 (𝑥, 𝑦, 𝑡) = ±
√

𝑅
2𝜔

tan
(√

𝑅
2(𝜔2 − 1)

(𝑥 − 𝑐𝑦 − 𝜔𝑡)
)

. (A.3)

7,8 (𝑥, 𝑦, 𝑡) = ±
√

𝑅
2𝜔

cot
(√

𝑅
2(𝜔2 − 1)

(𝑥 − 𝑐𝑦 − 𝜔𝑡)
)

. (A.4)
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