Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/55735
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrinkhoff, Jamesen
dc.contributor.authorDunn, Brian Wen
dc.contributor.authorDunn, Tinaen
dc.date.accessioned2023-08-16T23:18:57Z-
dc.date.available2023-08-16T23:18:57Z-
dc.date.issued2023-10-15-
dc.identifier.citationField Crops Research, v.302, p. 1-9en
dc.identifier.issn1872-6852en
dc.identifier.issn0378-4290en
dc.identifier.urihttps://hdl.handle.net/1959.11/55735-
dc.description.abstract<p>Rice field management around maturity and harvest are some of the most difficult decisions growers face. Field drainage and harvest timing affect quality, yield, and post-harvest drying costs. These decisions are informed by grain moisture content (MC). Over three years, three sites and three varieties, we studied the field dry-down rate and time to optimal harvest MC. We showed that field-specific parameters significantly affected these characteristics, including rice variety, Nitrogen applied (NA), mid-season N uptake (NU) and dry matter (DM). Increased N and DM is associated with increased MC and thus delays time to harvest. We developed models based on linear regression and nonlinear machine learning (ML) algorithms, including parameters describing these field-specific conditions. Cross validation across the three years provided a realistic expectation of model prediction errors. A linear model with the addition of nonlinear predictors achieved competitive performance compared with more complex and less interpretable ML models. When MC was modeled as a function of days since heading, similar or better accuracy was achieved to using accumulated weather parameters. Moisture content was predicted with mean absolute error of 2.1 %. The predicted time from heading to harvest MC was improved by the inclusion of field-specific parameters (N and variety) from mean absolute error of 6.8 days to 5.7 days. The final linear regression model explained 80 % of the moisture variability in the dataset, and provided estimates of dry-down rates, moisture as a function of time, and time to reach harvest moisture. This study shows the importance of including field-specific parameters when estimating of rice harvest timing, and provides methods to model these effects.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofField Crops Researchen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleThe influence of nitrogen and variety on rice grain moisture content dry-downen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.fcr.2023.109044en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameJamesen
local.contributor.firstnameBrian Wen
local.contributor.firstnameTinaen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailjbrinkho@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber109044en
local.format.startpage1en
local.format.endpage9en
local.peerreviewedYesen
local.identifier.volume302en
local.access.fulltextYesen
local.contributor.lastnameBrinkhoffen
local.contributor.lastnameDunnen
local.contributor.lastnameDunnen
dc.identifier.staffune-id:jbrinkhoen
local.profile.orcid0000-0002-0721-2458en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/55735en
local.date.onlineversion2023-07-18-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleThe influence of nitrogen and variety on rice grain moisture content dry-downen
local.relation.fundingsourcenoteThis work was funded by AgriFutures Australia, Grants PRO-013078 (Real-time remote-sensing based monitoring for the rice industry) and PRJ-009790 (Rice variety nitrogen and agronomic management).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorBrinkhoff, Jamesen
local.search.authorDunn, Brian Wen
local.search.authorDunn, Tinaen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/2a7f6331-334b-42bf-bfce-1611a5fc5ac7en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2023en
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/2a7f6331-334b-42bf-bfce-1611a5fc5ac7en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/2a7f6331-334b-42bf-bfce-1611a5fc5ac7en
local.subject.for2020300403 Agronomyen
local.subject.for2020300407 Crop and pasture nutritionen
local.subject.seo2020260308 Riceen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/TheInfluenceBrinkhoff2023JournalArticle.pdfPublished Version5.84 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

Page view(s)

200
checked on May 19, 2024

Download(s)

36
checked on May 19, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons