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A B S T R A C T   

Rice field management around maturity and harvest are some of the most difficult decisions growers face. Field 
drainage and harvest timing affect quality, yield, and post-harvest drying costs. These decisions are informed by 
grain moisture content (MC). Over three years, three sites and three varieties, we studied the field dry-down rate 
and time to optimal harvest MC. We showed that field-specific parameters significantly affected these charac-
teristics, including rice variety, Nitrogen applied (NA), mid-season N uptake (NU) and dry matter (DM). 
Increased N and DM is associated with increased MC and thus delays time to harvest. We developed models based 
on linear regression and nonlinear machine learning (ML) algorithms, including parameters describing these 
field-specific conditions. Cross validation across the three years provided a realistic expectation of model pre-
diction errors. A linear model with the addition of nonlinear predictors achieved competitive performance 
compared with more complex and less interpretable ML models. When MC was modeled as a function of days 
since heading, similar or better accuracy was achieved to using accumulated weather parameters. Moisture 
content was predicted with mean absolute error of 2.1 %. The predicted time from heading to harvest MC was 
improved by the inclusion of field-specific parameters (N and variety) from mean absolute error of 6.8 days to 5.7 
days. The final linear regression model explained 80 % of the moisture variability in the dataset, and provided 
estimates of dry-down rates, moisture as a function of time, and time to reach harvest moisture. This study shows 
the importance of including field-specific parameters when estimating of rice harvest timing, and provides 
methods to model these effects.   

1. Introduction 

Rice is one of the most important staple food crops, providing 
nutrition for much of the world’s population (Muthayya et al., 2014). 
Rice growers are motivated to optimize their crops, with processors 
often providing premiums and imposing penalties depending on quality 
(McCauley and Way, 2002). A key factor determining rice quality is 
harvest grain moisture content (MC) (Wang et al., 2021), which is 
determined largely by harvest timing. However, paddy drainage and 
harvest timing decisions are some of the most difficult growers face. 
Therefore, data and insights leading to optimized decision-making are 
desired (Sarkar et al., 2018; Dunn and Dunn, 2021). It is well known that 
nitrogen fertilization and biomass are key drivers of yields (Dunn et al., 
2016), but the effects of these parameters on maturity and harvest 
timing is less understood. 

In temperate growing regions, rice is mostly grown in irrigated 

environments, where fields are ponded for the majority of the season 
(Humphreys et al., 2006; Brinkhoff et al., 2022). After establishment, 
accumulated temperature drives progression through the vegetative 
growth stages (Darbyshire et al., 2019; Sharifi et al., 2018). At panicle 
initiation (PI), the head begins to form inside the stem. Heading is 
defined as the time when 50 % of the stems have flowered. At physio-
logical maturity, the grains have accumulated maximum dry matter 
(Rajanna and Andrews, 1970), which typically occurs around 26–28 % 
MC (Ward et al., 2021). Ponded fields are drained around this time as the 
plants no longer need water, and to ensure field trafficability for harvest. 
After grain moisture content has reduced to the recommended level 
(around 22 % as discussed below), crops are harvested. Harvested grains 
are dried and stored at a MC around 12.5 % (Calderwood et al., 1980). 

Rice yield is highly dependent on nitrogen (N) availability (Dunn 
et al., 2016). Studies have shown N application before continuous 
ponding results in the highest efficiency of N recovery by the plants 
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(Wilson et al., 1998) and is most important for determining yield (Dunn 
et al., 2016). However, mid-season N applications are often used to 
address deficiencies. A mid-season application at the PI growth stage is 
effective (Wilson et al., 1998), and results in more efficient recovery of 
the applied N than if applied at earlier vegetative growth stages (Peng 
and Cassman, 1998). It is not effective to address N deficiencies later in 
the season, for example at heading (Fageria and Baligar, 1999). In light 
of this, many studies seek to predict N uptake at PI using proximal and 
remote sensing methodologies (Lee et al., 2009; Inoue et al., 2012; 
Brinkhoff et al., 2021), in order to provide spatial N top-dressing rec-
ommendations. While anticipating operational remote-sensing-based 
systems, growers often sample crops for biomass and N uptake at PI, 
in order to determine optimal top-dressing rates (Dunn et al., 2016). 
Therefore, N and biomass status at the PI growth stage are well-known 
parameters in many rice growing systems, and are used in this study as a 
source of information on field-specific conditions. 

Harvest timing is a critical decision growers face. If rice is harvested 
too early, head rice yield may be reduced (Siebenmorgen et al., 2007). In 
addition, if growers deliver grains with high MC, they may be penalized 
by processors for the increased energy costs incurred to dry the product 
to the target storage MC (Calderwood et al., 1980). On the other hand, if 
rice is harvested too late, the low MC can lead to grain fissure, which can 
be further exacerbated by mechanical stress during the harvest process 
or if rain and re-drying occurs (Calderwood et al., 1980). This results in 
lower quality rice and lower whole grain yield. Siebenmorgen et al. 
(2007) found optimal harvest timing to maximize head rice yield was at 
MC of 19–22 % for long-grain cultivars, and 22–24 % for medium-grain 
cultivars. In Australia, harvest is recommended at MC of 22 % (Ward 
et al., 2021). Paddy drainage and harvest timing decisions are compli-
cated by the need to ensure field trafficability and possible adverse 
weather before harvest (Dingkuhn and Le Gal, 1996). Therefore, there is 
great interest in providing information to help optimize drainage and 
harvest timing (McCauley and Way, 2002). 

Current practices to determine harvest timing in many regions are 
inaccurate, non-specific or laborious (Yang et al., 2021; Wang et al., 
2021). There are rules-of-thumb related to grain color and grain texture 
(milky, doughy, hard) (Ward et al., 2021), which are subjective. Other 
guidelines approximate days between heading and harvest readiness 
(Wang et al., 2021). Some processors provide MC measurement services 
for field samples taken by growers. However, the results may not 
represent the harvest readiness of the whole field due to in-field vari-
ability (Dunn and Dunn, 2021), as samples are likely to be taken from 
locations that do not represent average field MC. Additionally, time and 
resource constraints on rice growers (who often manage many fields 
over large areas) motivate development of tools that can improve effi-
ciency (Xu et al., 2019). A model to predict MC is highly desired, 
allowing targeted samples to be taken only at critical times, or perhaps 
even removing the need for MC sampling altogether. 

Recent work has predicted rice MC at a point in time using spec-
troscopy (Lin et al., 2019), photos taken by a smartphone (Yang et al., 
2021), and UAV imagery (Sarkar et al., 2018; Dunn and Dunn, 2021). 
Other work has sought to establish grain dry-down models as a function 
of weather parameters for soy and maize crops (Martinez-Feria et al., 
2019; McCormick et al., 2021; Chazarreta et al., 2023) and rice (Lu and 
Siebenmorgen, 1994). However, in addition to weather and time, 
field-specific variables can also influence dry-down dynamics. Xu et al. 
(2022a) found that maize leaf area was correlated with grain moisture 
content at maturity, implying higher leaf area corresponds with slower 
dry-down. Corn grain moisture is impacted by hybrid (Ward et al., 
2016), by in-field variability (Miao et al., 2006) and by nitrogen rate 
(Zhang et al., 2021). There is less information available on the impact of 
these parameters on rice dry-down. 

In this work, we aimed to characterize field dry-down of rice. In 
particular, we studied how grain MC is influenced by nitrogen, biomass 
and variety. We tested a variety of nitrogen rates (0–180 kg/ha), and 
short, medium and long grain varieties over three years. MC models with 

predictors including a variety of accumulated weather and time vari-
ables were assessed. The accuracy improvement resulting from adding 
field-specific variables (variety, nitrogen and biomass) to the models 
was quantified. The results provided insights that will help growers take 
into account field-specific conditions when choosing harvest timing, in 
order to maximize productivity and quality. 

2. Methods 

2.1. Sites, years and experiments 

Three experiment sites with variable soil types were included in the 
study. Site 1 (RRAPL 35.34◦S, 145.52◦E) has a grey clay soil type. Site 2 
(LFS 34.61◦S, 146.36◦E) has a grey self-mulching clay soil. Site 3 (YAI 
34.61◦S, 146.42◦E) has a red-brown earth soil. 

There were variable weather conditions over the three years, with 
2019 being hotter and drier than 2020 and 2021 (Fig. 1a). 

Three semi-dwarf rice varieties with different grain types were 
included (Troldahl et al., 2014). Reiziq is a bold medium grain variety 
with high yield potential and average grain weight of 29 mg. Langi is a 
long grain soft cooking (low amylose) variety with 23 mg grain weight. 
Opus is a short grain sushi variety, also with 23 mg grain weight. 

Table 1 provides a description of the eight experiments. Rice seed 
was drill sown (Dunn and Ford, 2018) with a row spacing of 20 cm and 
target plant population of 100–200 plants/m2. Plot sizes ranged from 55 
to 135 m2. The plots were intermittently irrigated until ponding, 
following common practice for drill sown rice in Australia (Ward et al., 
2021). Each site included an experiment with standard sowing and 
ponding dates, and an experiment with delayed permanent water (DPW, 
ponding in late December). The DPW experiments were sown earlier to 
account for slower growth during the longer intermittent irrigation 
period, as recommended in Ward et al. (2021). 

Plots at each experiment included multiple varieties and N rates from 
0 to 180 kg/ha as listed in Table 1. There were 2 replicates of each va-
riety and N rate combination in 2019, and 3 replicates in 2020 and 2021. 
The 2020 and 2021 experiments included all 3 varieties, while the 2019 
experiments had 2 varieties each (Table 1). The 0 and 180 kg/ha plots of 
the DPW experiments in 2019 were not sampled because bird damage 
and lodging rendered them unrepresentative. 

2.2. Plot sampling methodology 

Each plot was first sampled around 7 January (close to the timing of 
the panicle initiation (PI) growth phase). These samples were used to 
determine the N uptake (NU kg/ha) and above-ground dry matter (DM 
kg/ha). These samples involved gathering above-ground biomass from 
1 m × 4 rows. The samples were dried at 60 ◦C and weighed. Sub-
samples of whole plants were ground and mixed prior to analysis for N 
concentration by Dumas combustion. The N concentration was multi-
plied by the measured DM weight to calculate NU in kg/ha. 

Secondly, the heading date for each plot was recorded. This was 
defined as the date on which 50 % of stems had flowered. 

Thirdly, each plot was sampled at multiple dates to obtain a time- 
series of grain moisture. The median number of samples per plot was 
4, and the maximum was 8. Samples were collected after morning dew 
had evaporated. Each sample consisted of three hand-grabs, which were 
threshed, resulting in approximately 500 g of grain. 

The moisture content of the samples were tested using a Cropscan 
2000B near-infrared transmission instrument. Prior to this work, this 
instrument was calibrated to determine rice moisture content using 197 
field samples covering the moisture range of 12–30 %. The reference 
moisture content of these samples was determined using the two-stage 
air-oven reference method (AACC, 1999). The developed calibration 
was tested independently in the following season, producing an R2 of 
0.97. 

In all, 911 moisture samples were obtained over the three years 
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(Table 1). The MC was distributed around the target harvest MC of 22 % 
(see MC histogram in Fig. 1b). The MC data for each plot was linearly 
interpolated on a daily basis, the date where the interpolated moisture 
was closest to 22 % was recorded. Then the number of days from 
heading to MC = 22 % was calculated. Of the 189 sampled plots, 177 
had a moisture sample within 1 % of 22 %. 

2.3. Predictors of moisture dry-down 

We first assessed how the field-specific parameters (such as variety, 
nitrogen and dry matter, Table 2) impact the number of days from 
heading to MC = 22 % using Tukey’s honest significant difference 
(HSD) test. 

Daily weather information for each site was downloaded from the 
SILO dataset (Jeffrey et al., 2001). This data included vapor pressure 
deficit (VPD), reference evapotranspiration (ETo) and solar radiation. 
Degree days were calculated with base temperature of 10∘C, which is the 

value used in many rice PI phenology models (Darbyshire et al., 2019; 
Sharifi et al., 2017). Specific to each plot, the 5 time and weather var-
iables were accumulated from the heading date (listed in Table 2). We 
chose the heading date as the starting point because it is easily observed 
in each rice field and represents the beginning of the maturing growth 
stages. We determined the power of the accumulated weather variables 
to predict grain moisture dry-down by calculating the correlation co-
efficients between each of them and the 911 moisture samples. 

2.4. Dry-down model training and testing 

Many models were trained and tested using combinations of pre-
dictor variables (Table 2) and algorithms. As an example, a model f with 
3 predictors [

∑
GDD, NU, Variety], is trained to predict MC at time step 

t, and is described by: 

MC(t) = f

(
∑t

Heading
GDD,NU,Variety

)

(1)  

where f is a function that is determined using the algorithms described 
below. 

We used a variety of linear and nonlinear algorithms to model the 
relationship between combinations of the variables in Table 2 and grain 
moisture. The scikit-learn, statsmodels and LightGBM packages 
(Pedregosa et al., 2011; Seabold and Perktold, 2010; Ke et al., 2017) 
were used to implement the algorithms. These included the tree-based 
models random forest (RF) and LightGBM (LGBM); support vector 
regression (SVR) with radial basis function kernel; and linear regression 
(LR). The grain dry-down vs time characteristic is nonlinear (Marti-
nez-Feria et al., 2019), which the RF, LGBM and SVR algorithms can 
model. For the linear models, we used polynomials of the cumulative 
variables (Table 2) to allow the nonlinear characteristic to be described. 

Randomly splitting train and test data can result in over-optimistic 

Fig. 1. (a) February–March average temperature and cumulative rainfall over each of the site-years. (b) Histogram of sampled moisture contents.  

Table 1 
List of experiments, with the number of plots and moisture samples collected for each. In the varieties column, S = short, M = medium and L = long grain.  

Year Site Sowing Ponding N rates (kg/ha) Varieties Plots Samples  

2019 RRAPL 29 Oct 8 Dec 0,60,120,180 S,M 16 49  
2019 RRAPL 10 Oct 21 Dec 60,120 S,M 8 21  
2019 YAI 25 Oct 3 Dec 0,60,120,180 M,L 16 57  
2019 YAI 17 Oct 24 Dec 60,120 M,L 8 25  
2020 LFS 23 Oct 21 Nov 0,60,120,180 S,M,L 36 210  
2020 LFS 11 Oct 20 Dec 0,60,120,180 S,M,L 36 288  
2021 LFS 24 Oct 25 Nov 0,60,120,180 S,M,L 33 77  
2021 LFS 14 Oct 23 Dec 0,60,120,180 S,M,L 36 246  

Table 2 
Predictive variables for MC models. The first five variables were accumulated 
from heading to the date MC is being predicted for. 

∑
Days is the number of days 

since heading. GDD is growth degree days, ETo is reference evapotranspiration, 
and VPD is vapor pressure deficit. For the static variables, NA is nitrogen 
applied, NU is nitrogen uptake and DM is the above-ground dry matter.  

Group Variable Units 

Cumulative from heading 
∑

Days Days 
∑

GDD ∘C 
∑

ETo mm 
∑

SolarRadiation MJ/m2 
∑

VPD hPa 
Field-specific NA kg/ha 

NU kg/ha 
DM g/m2 

Variety Short, medium, long  
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error estimates for agricultural studies (Brinkhoff et al., 2019). There-
fore, we adopted a leave-one-year-out cross-validation strategy to 
ensure we obtained realistic estimates of prediction errors when 
applying models to new seasons. This involved running 3 experiments 
for each algorithm/variable combination, (i) train model on 
2018 + 2019, test on 2020, (ii) train model on 2018 + 2020, test on 
2019, (iii) train model on 2019 + 2020, test on 2018. The model pre-
dictions for grain moisture (%) were assessed using standard metrics 
including mean absolute error (MAE), and Lin’s concordance correlation 
coefficient (LCCC) (Lin, 1989). LCCC has a range of 0–1 and measures 
how close predicted values are to the actual values (i.e. how close points 
are to the 1:1 line on an actual vs predicted graph). 

After predicting the moisture for each date using the developed 
models, we determined the date MC was predicted to reach 22 % (see 
the example in Fig. 2). This was then compared to the actual MC = 22 % 
dates from the interpolated field samples (described above). The errors 
between actual and predicted 22 % dates over all plots were assessed 
using the MAE and LCCC. 

After assessing the various predictors and algorithms using the cross 
validation strategy described above, we selected the most suitable 
combination, and developed a model trained on all data. This model is 
discussed as a basis for understanding the impact of accumulated time/ 
weather and field-specific variables on rice grain moisture dry-down 
dynamics, and to provide a basis for predicting grain moisture in new 
growing seasons. 

3. Results 

3.1. Factors affecting dry-down rates and time to reach MC = 22 % 

Heading occurred between 22 January and 19 February (189 plots). 
MC = 22 % was reached between 10 March and 24 April (177 plots). On 
average, there were 51 days between heading and MC = 22 %. 

Days from heading to MC = 22 % for the three varieties was 
compared (Fig. 3b). The medium grain variety took longer to reach 
MC = 22 % compared to the long grain variety (by 6.5 days, p = 0.001), 
and compared to the short grain variety (by 2.6 days, p < 0.01). The 
short grain variety was slower to reach harvest moisture than the long 
grain variety, but the difference was not significant (p = 0.1). 

The number of days from heading to MC = 22 % was similar in 2019 
and 2020, but was less in 2021 by approximately 5 days (p = 0.001, 
Fig. 3c). 

Fig. 3a shows the average moisture at each day since heading, 
separated by applied N rates. There were significant differences in days 
from heading to MC = 22 % between all combinations of N rates 
(0,60,120,180 kg/ha, p < 0.01), with higher rates taking longer to reach 
MC = 22 % (Fig. 3d). The time from heading to MC = 22 % was 
significantly and positively correlated with both PI dry matter (Fig. 3e, 
R2 = 0.18) and PI N uptake (Fig. 3f, R2 = 0.28). 

We calculated the correlation between MC and the five variables 
accumulated from heading (Table 2), using all 911 samples. 
∑

SolarRadiation was best correlated with MC, explaining 74 % of the 
variation, and 

∑
ETo and 

∑
Days both explained 69 %. 

∑
GDD and 

∑
VPD were less correlated (66 % and 47 % respectively). 

3.2. Leave-one-year-out cross-validated model comparisons 

The leave-one-year-out cross-validation results of models trained 
using a range of input features are shown in Table 3. 

Experiment set 1 in Table 3 compares models built using the LGBM 
algorithm and a single cumulative predictor. 

∑
SolarRadiation is the 

best predictor, giving moisture prediction MAE = 2.3 %, and days to 
MC = 22 % MAE of 7 days. Second best was 

∑
Days, with very similar 

moisture prediction error metrics to radiation. We noted that the 
∑

Days 
predictor also has the advantage of being very simple to understand and 
apply, whereas solar radiation is less familiar and not available in many 
weather observation and forecast products. Because of this, we selected 
∑

Days for further investigations. Other predictors (VPD, GDD and ETo) 
yielded poorer errors. 

Experiment set 2 (Table 3) adds the field-specific variables. Adding 
variety (short, medium and long grain) to 

∑
Days reduced MC MAE from 

2.3 % to 2.2 %, and the MC = 22 % MAE by more than 1 day (MAE 7.3. 
days). These and following results indicate a small reduction in moisture 
prediction errors leads to a significant reduction in the days to 
MC = 22 % prediction error, which is due to the dry-down curve having 
a low slope (on the order of 0.5 %/day, Fig. 2). 

Of the nitrogen and biomass variables, adding applied N (NA) led to 
models with the lowest errors, which was slightly better than NU. Both 
of these N variables were better features than DM. We selected NU for 
further investigations, as this parameter is often measured by growers to 
guide mid-season N application (Dunn, 2008), and is expected to 
describe some of the variability due to residual soil N, which could lead 
to uncertainty in model predictions based on NA. 

Experiment set 3 investigated other nonlinear algorithms, to 

Fig. 2. Predicted and sampled moisture for a plot from the 2019 YAI experiment, illustrating how the error (5 days) between actual and predicted MC = 22 % date is 
calculated. Predictions from 2 models are shown: a linear regression (LR) model with features [

∑
Days, 

∑
Days2, PI N, Variety], and a Light Gradient Boosting 

Machine (LGBM) model with features [
∑

Days, PI N, Variety], both trained on independent 2020–2021 data. 
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Fig. 3. (a) Dry down curves, averaged per day, with shaded areas showing the 95 % confidence interval. The time between heading and MC = 22 % as a function of 
(b) applied nitrogen rate, (c) variety, (d) year, (e) dry matter at PI and (f) nitrogen uptake at PI. Box plots show p-values from the Tukey HSD tests. 
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compare with LGBM, with the [
∑

Days, NU, Variety] variable set. LGBM 
gave the lowest errors compared with RF and SVR. 

Noting that experiment set 1 showed cumulative radiation was a 
better predictor than days when only a single predictor is used, we also 
trained LGBM models using predictors [

∑
SolarRadiation, NU, Variety] 

to compare with experiment set 3, which used 
∑

Days. In this case, the 
predictions with 

∑
SolarRadiation were slightly worse (MAE = 2.2 % 

and 5.8 days) than using the simpler 
∑

Days, indicating the predictive 
advantage of 

∑
SolarRadiation is not clear when field-specific variables 

are included. 
Finally, experiment set 4 investigated using linear regression (LR), 

which has the advantage of providing easily interpretable predictions in 
contrast to the other algorithms. It also produces smooth predictions vs 
time, which is not the case for tree-based models such as LGBM (Fig. 2), 
because the latter model predictions are based on ensembling discrete 
prediction values. The LR model with [

∑
Days, NU, Variety] (2nd row, 

Experiment 4, Table 3) produced higher errors than the nonlinear 
models. However, when 

∑
Days2 was added, the predictions were 

competitive or better than the nonlinear model predictions. There was 
no advantage to adding a third-order polynomial term (

∑
Days3). 

The prediction accuracy of the LR models with and without the field 
specific variables (NU and Variety) are compared in Fig. 4, using the 
cross-validation strategy. Adding the field-specific variables to the 
models improves moisture prediction MAE from 2.3 % to 2.1 %, and 
improves MC = 22 % predictions by more than a day, from 6.8 to 5.7 
days. 

3.3. Final model 

We determined the following from the above experiments:  

• Linear regression gave good accuracy relative to more complex and 
less interpretable algorithms, provided a second-order polynomial of 
the cumulative predictor was used to account for nonlinear dry-down 
vs time.  

• The simple 
∑

Days predictor was similar or better than weather- 
based cumulative predictors.  

• Variety did improve model predictions.  
• Predictions using NU were not quite as good as NA, but are likely to 

generalize better to new sites and seasons, due to uncertainty about 
pre-existing soil N. 

Therefore, we trained a LR model on all data (n = 911) using vari-
able set [

∑
Days, 

∑
Days2, NU, Variety]. The model performance and 

parameters are given in Table 4. 
For example, for the medium grain variety, the equation is: 

MC(%) = 45.8 + 0.016 × NU − 0.65 ×
∑

Days + 0.0034 ×
∑

Days2 (2)  

This quadratic equation can be solved to find the number of days from 
heading to any moisture content. For the medium grain variety with a 
typical panicle initiation N uptake of 100 kg/ha (Dunn et al., 2016), the 
model predicts 55 days from heading to MC = 22 % (Fig. 5). 

Eq. (2) can be differentiated to find the dry down rate: 

dMC
d
∑

Days
= 0.0068 ×

∑
Days − 0.65 (3)  

This describes the expected characteristic, that dry-down rate slows as 
moisture reduces towards equilibrium (Martinez-Feria et al., 2019). At 
30 days after heading, the dry-down rate is − 0.45 %/day. At 55 days it 
is − 0.28%/day. 

Predicted dry-down for the different varieties and a range of NU are 
shown in Fig. 5. Eq. (2) indicates that for every 50 kg/ha increase in N 
uptake, there is a 0.8% increase in MC. This increases time to harvest 
moisture, as the experimental data also showed (Fig. 3d). The medium 
grain variety was predicted to have more than 1 % higher grain moisture 
than the other varieties (Table 4), which is reflected in the slower time to 
harvest for this variety in the experimental data (Fig. 3b). 

4. Discussion 

We developed predictive and descriptive models for rice MC dry- 
down in the field for long, medium and short grain rice varieties. The 
models were able to describe much of the variability in the moisture 
samples (R2 = 0.8). Incorporating factors related to field variability 
improves model predictions and provides understanding of how these 
factors affect time to harvest. Variety, applied nitrogen, mid-season ni-
trogen uptake and dry matter were found to be important drivers of dry- 
down variability. Adding field-specific variables such as nitrogen and 
variety improved the average prediction error of days from heading to 
harvest moisture by around a day (from MAE = 6.8–5.7 days for the 
linear models). 

Cumulative solar radiation was a good predictor of moisture dry- 

Table 3 
Table of cross-validated model results, LR = Linear Regression, LGBM = Light Gradient Boosting Machine, RF = Random Forest, SVR = Support Vector Regression. 
Bold numbers and darker shading indicate higher accuracy.  

J. Brinkhoff et al.                                                                                                                                                                                                                               



Field Crops Research 302 (2023) 109044

7

down, and degree days was not. However, we found that cumulative 
days since heading was almost as good a predictor of grain MC as any 
cumulative weather variables. Similarly, McCauley and Way (2002) 
found that weather did not explain the variability in rice dry-down be-
tween years, and that the effect of rainfall on MC was not consistent. 
Also, while Martinez-Feria et al. (2019) included temperature and hu-
midity in the equilibrium moisture component of their model, they 
similarly found little advantage to using weather variables over cumu-
lative days in their dry-down model component. However, more recent 
work on maize dry-down (Chazarreta et al., 2023) showed that when a 
wider range of sowing dates are included, weather variables do have a 
significant effect on dry-down parameters. Similarly, it is possible that if 
more years of data were available for this work, the cumulative weather 
variables could have been more important, as the dataset would 

Fig. 4. Cross-validation actual vs predicted moisture for the 911 samples (left) and day of year (DOY) of MC = 22 % (right). Predictions are from linear regression 
models with input features being (a–b) [

∑
Days, 

∑
Days2], and (c–d) [

∑
Days, 

∑
Days2, NU, Variety]. 

Table 4 
Linear regression model trained on all 911 samples. R2 was 0.80, and p < 0.001. 
The p-value of all model coefficients were < 0.001. Short, Medium and Long are 
the intercept, specific to each rice variety. NU is N uptake around panicle 
initiation (kg/ha). 

∑
Days is the number of days between heading and the date 

MC is being predicted for.  

Predictor Coefficient 95 % confidence interval 

Short 44.6 43.1–46.1 
Medium 45.8 44.3–47.3 
Long 43.8 42.3–45.2 
NU 0.016 0.013–0.019 
∑

Days − 0.65 − 0.70 to − 0.60 
∑

Days2 0.0034 0.0030–0.0038  
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encompass a wider range of weather variability. Along similar lines, 
Lobell and Burke (2010) found a dataset with a sufficiently wide range of 
weather variability from spatial and seasonal heterogeneity was crucial 
to accurately quantify how weather affects yield. Until sufficient data is 
available to prove the advantage of using weather predictor variables, 
the decision to use cumulative days as the main predictor of dry-down 
has the advantage of producing models that are simple to apply and 
interpret, while maintaining accuracy. 

Higher nitrogen rates and biomass were associated with higher 
moisture content, and longer time to reach harvest moisture. This is 
similar to the trend found for corn (Zhang et al., 2021). Similarly, Xu 
et al. (2022a) found larger leaf area (which may be caused by higher 
nitrogen) was associated with higher moisture content in maize. 

We found the medium grain variety (Reiziq) had higher moisture 
content and longer time to reach harvest maturity. It is possible this 
could be explained by the larger grain volume and higher grain weight 
of this variety compared with the short and long varieties (29 vs 23 mg, 
see the Section 2). However experiments with more varieties and a range 
of grain sizes would be needed to confirm this. 

Machine learning algorithms were able to predict the nonlinear dry- 
down of MC with respect to time (Fig. 2). The LightGBM algorithm has 
produced state-of-the-art performance on tabular and forecasting 
problems, such as the one in this work (Ke et al., 2017; Makridakis et al., 
2022), and we found it produced the best results among the machine 
learning algorithms we tried. However, when we added a nonlinear 
predictor (the square of the days since heading), linear regression pro-
duced similar accuracy. Linear regression had the benefit of producing 
smooth predictions vs time, whereas the tree-based models tended to 
produce non-smooth predictions because of their discrete nature 
(Fig. 2). Linear regression also gave the advantage of providing a 
descriptive model, that can be interrogated to determine factors such as 
the time to reach a specific moisture content, expected dry-down rates, 
and how these change with variety and nitrogen. 

We used indicators of N and biomass obtained relatively early in the 
season, at the panicle initiation growth phase. Potentially, samples taken 
later in the season, closer to maturity, may improve quantification of the 
effects of these parameters on dry-down. However, samples are often 
taken at PI rather than later in the season due to the need to topdress at 
that time to address nitrogen deficiencies (Wilson et al., 1998; Fageria 
and Baligar, 1999; Dunn et al., 2016), making our choice a practical one 
due to data availability. 

Our model does not explain all of the variability in grain moisture, 
and variability in the time to reach 22 % MC. Some of the remaining 
variability is due to inherent errors in sample gathering, processing and 
uneven distribution of grain moisture contents (Kocher et al., 1990). 

Some may be caused by additional in- and between-field variability 
caused by other factors that have not been incorporated in the model 
(for example soil, other nutrient limitations and water management). 
Remote sensing is able to describe nitrogen status (Brinkhoff et al., 
2019), biomass (Xu et al., 2022b) and vegetation water content (Yilmaz 
et al., 2008). Previous work has demonstrated estimation of phenolog-
ical stage (Yang et al., 2020), optimal harvest timing (Meng et al., 2015) 
and prediction of grain moisture content at the time an image was ac-
quired (Dunn and Dunn, 2021; Sarkar et al., 2018). Therefore, remote 
sensing potentially offers the opportunity to capture field variability that 
may be able to further reduce some of our model’s uncertainty. 

There are several factors that influence the decisions regarding when 
to drain rice fields and when to start harvest. These include the soil type, 
weather forecast and the requirement to ensure field trafficability for 
harvesters (Dingkuhn and Le Gal, 1996). The purpose of this study was 
to present data and models that contribute to understanding another 
crucial factor: predicting grain moisture content and thus optimal har-
vest date. Specifically, the results have shown how field-specific con-
ditions such as variety, nitrogen status and biomass impact these 
decisions. 

5. Conclusion 

This work developed predictive and descriptive models of rice grain 
moisture content dry-down. It provides understanding of how field- 
specific parameters such as rice variety and nitrogen affect dry-down 
and time to optimal harvest moisture content. Higher biomass and ni-
trogen were associated with longer times to reach harvest moisture. 
Models were able to predict time to harvest moisture with an average of 
less than 6 days error (using a robust leave-one-year-out cross-validation 
train/test methodology). We anticipate combining remote sensing with 
such dry-down models will further improve accuracy through quanti-
fying field-specific parameters, with the aim of providing grain moisture 
forecast tools for growers to aid field drainage and harvest timing 
decisions. 
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