Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/54695
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Charlton, G | en |
dc.contributor.author | Falzon, G | en |
dc.contributor.author | Shepley, A | en |
dc.contributor.author | Fleming, P J S | en |
dc.contributor.author | Ballard, G | en |
dc.contributor.author | Meek, P D | en |
dc.date.accessioned | 2023-05-08T23:01:54Z | - |
dc.date.available | 2023-05-08T23:01:54Z | - |
dc.identifier.citation | Wildlife Research, p. A-J | en |
dc.identifier.issn | 1448-5494 | en |
dc.identifier.issn | 1035-3712 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/54695 | - |
dc.description.abstract | <p><b>Context:</b> Ground baiting is a strategic method for reducing vertebrate pest populations. Best practice involves maximising bait availability to the target species, although sustaining this availability is resource intensive because baits need to be replaced each time they are taken. This study focused on improving pest population management through the novel baiting technique outlined in this manuscript, although there is potential use across other species and applications (e.g. disease management). </p><p><b>Aims:</b> To develop and test an automated, intelligent, and semi-permanent, multi-bait dispenser that detects target species before distributing baits and provides another bait when a target species revisits the site.</p><p><b> Methods:</b> We designed and field tested the Sentinel Bait Station, which comprises a camera trap with in-built species-recognition capacity, wireless communication and a dispenser with the capacity for five baits. A proof-of-concept prototype was developed and validated via laboratory simulation with images collected by the camera. The prototype was then evaluated in the field under real-world conditions with wild-living canids, using non-toxic baits.</p><p><b> Key results:</b> Field testing achieved 19 automatically offered baits with seven bait removals by canids. The underlying image recognition algorithm yielded an accuracy of 90%, precision of 83%, sensitivity of 68% and a specificity of 96% throughout field testing. The response time of the system, from the point of motion detection (within 6-10 m and the field-of-view of the camera) to a bait being offered to a target species, was 9.81 ± 2.63 s.</p><p><b> Conclusion:</b> The Sentinel Bait Station was able to distinguish target species from non-target species. Consequently, baits were successfully deployed to target species and withheld from non-target species. Therefore, this proof-of-concept device is able to successfully provide baits to successive targets from secure on-board storage, thereby overcoming the need for daily bait replacement.</p><p><b> Implications:</b> The proof-of-concept Sentinel Bait Station design, together with the findings and observations from field trials, confirmed the system can deliver multiple baits and increase the specificity in which baits are presented to the target species using artificial intelligence. With further refinement and operational field trials, this device will provide another tool for practitioners to utilise in pest management programs.</p> | en |
dc.language | en | en |
dc.publisher | CSIRO Publishing | en |
dc.relation.ispartof | Wildlife Research | en |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | The Sentinel Bait Station: an automated, intelligent design pest animal baiting system | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1071/WR22183 | en |
dcterms.accessRights | Bronze | en |
local.contributor.firstname | G | en |
local.contributor.firstname | G | en |
local.contributor.firstname | A | en |
local.contributor.firstname | P J S | en |
local.contributor.firstname | G | en |
local.contributor.firstname | P D | en |
local.profile.school | Office of Faculty of Science, Ag, Business and Law | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | gcharlto@une.edu.au | en |
local.profile.email | gfalzon2@une.edu.au | en |
local.profile.email | asheple2@une.edu.au | en |
local.profile.email | pflemin7@une.edu.au | en |
local.profile.email | gballar3@une.edu.au | en |
local.profile.email | pmeek5@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Australia | en |
local.format.startpage | A | en |
local.format.endpage | J | en |
local.peerreviewed | Yes | en |
local.title.subtitle | an automated, intelligent design pest animal baiting system | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Charlton | en |
local.contributor.lastname | Falzon | en |
local.contributor.lastname | Shepley | en |
local.contributor.lastname | Fleming | en |
local.contributor.lastname | Ballard | en |
local.contributor.lastname | Meek | en |
dc.identifier.staff | une-id:gcharlto | en |
dc.identifier.staff | une-id:gfalzon2 | en |
dc.identifier.staff | une-id:asheple2 | en |
dc.identifier.staff | une-id:pflemin7 | en |
dc.identifier.staff | une-id:gballar3 | en |
dc.identifier.staff | une-id:pmeek5 | en |
local.profile.orcid | 0000-0002-1989-9357 | en |
local.profile.orcid | 0000-0001-7511-4967 | en |
local.profile.orcid | 0000-0002-0287-9720 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/54695 | en |
local.date.onlineversion | 2023-04-17 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | The Sentinel Bait Station | en |
local.relation.fundingsourcenote | Funding for this research was provided by the Department of Agriculture,Water and the Environment through the Centre for Invasive Species Solutions. Dr Ballard, Dr Fleming and Dr Meek were funded by the NSW Department of Primary Industries, and Dr Falzon and Mr Charlton were funded by the University of New England | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Charlton, G | en |
local.search.author | Falzon, G | en |
local.search.author | Shepley, A | en |
local.search.author | Fleming, P J S | en |
local.search.author | Ballard, G | en |
local.search.author | Meek, P D | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2023 | - |
local.subject.for2020 | 460304 Computer vision | en |
local.subject.for2020 | 400708 Mechatronics hardware design and architecture | en |
local.subject.for2020 | 410404 Environmental management | en |
local.subject.seo2020 | 220403 Artificial intelligence | en |
local.subject.seo2020 | 220402 Applied computing | en |
local.subject.seo2020 | 180602 Control of pests, diseases and exotic species in terrestrial environments | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
550
checked on Nov 17, 2024
Download(s)
6
checked on Nov 17, 2024
This item is licensed under a Creative Commons License