Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/52805
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimanungkalit, Gamalielen
dc.contributor.authorBarwick, Jamieen
dc.contributor.authorCowley, Francesen
dc.contributor.authorDawson, Bradleyen
dc.contributor.authorDobos, Robinen
dc.contributor.authorHegarty, Rogeren
dc.date.accessioned2022-07-13T04:45:27Z-
dc.date.available2022-07-13T04:45:27Z-
dc.date.issued2021-11-
dc.identifier.citationApplied Animal Behaviour Science, v.244, p. 1-9en
dc.identifier.issn1872-9045en
dc.identifier.issn0168-1591en
dc.identifier.urihttps://hdl.handle.net/1959.11/52805-
dc.description.abstractMonitoring the licking behaviour in grazing cattle is a potential means for quantifying block supplement intake. The current study aimed to 1) evaluate the capability of an ear-tag accelerometer to identify the licking behaviour at a block supplement in grazing cattle and 2) validate individual licking state (LS) duration predicted by an accelerometer and radio-frequency identification (RFID) system. Four out of 12 Angus steers weighing 384 ± 9.7 kg (mean ± SD) were given free access to a 900 m<sup>2</sup> supplement yard with access to two RFID-equipped automatic supplement feeders provided daily from 15:00 to 18:00 h for 10 days. Each steer was fitted with an ear-tag containing a 3-axis accelerometer set at a frequency of 25 Hz. Accelerometer data were segmented into three window sizes (3, 5, and 10 s) and further processed using four machine learning (ML) algorithms: Random Forest (RF), Extreme Gradient Boosting (XGB), Logistic Regression (LR) and Linear Discriminant Analysis (LDA). The best performance in classifying licking behaviour was obtained from the combination of XGB and 10 s window size with an accuracy, Kappa coefficient, and F1 score of 93%, 0.88, and 0.88, respectively. Accelerometers and RFID systems consecutively under-predicted and over-predicted LS duration by 20% and 6%, with a mean absolute error (MAE) proportion of 22% and 10%, a ratio of root mean square prediction error (RSR) of 0.33 and 0.14 and a modelling efficiency (MEF) of 0.89 and 0.98. Overall, both the ear-tag accelerometer and RFID system was capable of monitoring the licking behaviour and LS duration of grazing cattle accessing block supplements.en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofApplied Animal Behaviour Scienceen
dc.titleUse of an ear-tag accelerometer and a radio-frequency identification (RFID) system for monitoring the licking behaviour in grazing cattleen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.applanim.2021.105491en
local.contributor.firstnameGamalielen
local.contributor.firstnameJamieen
local.contributor.firstnameFrancesen
local.contributor.firstnameBradleyen
local.contributor.firstnameRobinen
local.contributor.firstnameRogeren
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolScience Engineering Workshopen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailgsimanu2@une.edu.auen
local.profile.emailjbarwic2@une.edu.auen
local.profile.emailfcowley@une.edu.auen
local.profile.emailbdawson@une.edu.auen
local.profile.emailrdobos2@une.edu.auen
local.profile.emailrhegart3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeNetherlandsen
local.identifier.runningnumber105491en
local.format.startpage1en
local.format.endpage9en
local.identifier.scopusid85118337557en
local.peerreviewedYesen
local.identifier.volume244en
local.contributor.lastnameSimanungkaliten
local.contributor.lastnameBarwicken
local.contributor.lastnameCowleyen
local.contributor.lastnameDawsonen
local.contributor.lastnameDobosen
local.contributor.lastnameHegartyen
dc.identifier.staffune-id:gsimanu2en
dc.identifier.staffune-id:jbarwic2en
dc.identifier.staffune-id:fcowleyen
dc.identifier.staffune-id:bdawsonen
dc.identifier.staffune-id:rdobos2en
dc.identifier.staffune-id:rhegart3en
local.profile.orcid0000-0002-9401-8388en
local.profile.orcid0000-0003-0905-8527en
local.profile.orcid0000-0002-6475-1503en
local.profile.orcid0000-0001-7290-9000en
local.profile.orcid0000-0002-9110-6729en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/52805en
local.date.onlineversion2021-10-23-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleUse of an ear-tag accelerometer and a radio-frequency identification (RFID) system for monitoring the licking behaviour in grazing cattleen
local.relation.fundingsourcenoteThis research is funded by the Meat & Livestock Australia (MLA) Donor Company through Livestock Productivity Partnership (LPP) program (Grant ID: P.PSH.0857) and the University of New England. The first author is supported by the Australian Government Endeavour Postgraduate Leadership Award.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSimanungkalit, Gamalielen
local.search.authorBarwick, Jamieen
local.search.authorCowley, Francesen
local.search.authorDawson, Bradleyen
local.search.authorDobos, Robinen
local.search.authorHegarty, Rogeren
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000744230400001en
local.year.available2021en
local.year.published2021en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/9385bf74-6ba8-4867-b5ea-5d27b1f47924en
local.subject.for2020300207 Agricultural systems analysis and modellingen
local.subject.seo2020100401 Beef cattleen
Appears in Collections:Journal Article
School of Environmental and Rural Science
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

14
checked on Oct 26, 2024

Page view(s)

664
checked on Mar 8, 2023

Download(s)

2
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.