Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/51902
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shahinfar, S | en |
dc.contributor.author | Kahn, L | en |
dc.date.accessioned | 2022-05-03T01:16:44Z | - |
dc.date.available | 2022-05-03T01:16:44Z | - |
dc.date.issued | 2018-05 | - |
dc.identifier.citation | Computers and Electronics in Agriculture, v.148, p. 72-81 | en |
dc.identifier.issn | 1872-7107 | en |
dc.identifier.issn | 0168-1699 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/51902 | - |
dc.description.abstract | <p> Wool production and its quality play important roles in determining the total income received by Australian sheep producers. Enabling accurate and early prediction of wool production and quality traits for individual and groups of sheep can provide useful information assisting on-farm management decision-making. Robustness and high performance of modern prediction methods, namely Machine Learning (ML) algorithms, make them sui table for this purpose. In this research, flock specific environmental data and phenotypic information of yearling lambs were combined to identify the most effective algorithm to predict adult Greasy Fleece Weight (aGFW), adult Clean Fleece Weight (aCFW), adult Fibre Diameter (aFD), adult Staple Length (aSL), and adult Staple Strength (aSS). Algorithms were evaluated and compared in terms of prediction error, the correlation between predicted and actual phenotype in a test set, and for uncertainty in prediction. <br/> Artificial Neural Networks (NN), Model Tree (MT) and Bagging (BG) were used to carry out these predictions and their performance was compared with Linear Regression (LR) as the gold standard of prediction. The NN method had the poorest performance in all five traits. MT and BG had very similar performance and for a number of practical reasons, our method of choice was MT for early prediction of adult wool traits. The correlation coefficients of MT predictions were 0.93, 0.90, 0.94, 0.81 and 0.59 with Mean Absolute Error of 0.48 kg, 0.41 kg, 0.92 µm, 6.91 mm and 6.82 N/ktex, for predicting aGFW, aCFW, aFD, aSL, and aSS respectively.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Computers and Electronics in Agriculture | en |
dc.title | Machine learning approaches for early prediction of adult wool growth and quality in Australian Merino sheep | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.compag.2018.03.001 | en |
dc.subject.keywords | Staple strength | en |
dc.subject.keywords | Sheep | en |
dc.subject.keywords | Wool | en |
dc.subject.keywords | Fibre diameter | en |
dc.subject.keywords | Agriculture, Multidisciplinary | en |
dc.subject.keywords | Computer Science, Interdisciplinary Applications | en |
dc.subject.keywords | Agriculture | en |
dc.subject.keywords | Computer Science | en |
dc.subject.keywords | Machine learning | en |
dc.subject.keywords | Prediction | en |
local.contributor.firstname | S | en |
local.contributor.firstname | L | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | sshahinf@une.edu.au | en |
local.profile.email | lkahn3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Netherlands | en |
local.format.startpage | 72 | en |
local.format.endpage | 81 | en |
local.identifier.scopusid | 85045795485 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 148 | en |
local.contributor.lastname | Shahinfar | en |
local.contributor.lastname | Kahn | en |
dc.identifier.staff | une-id:sshahinf | en |
dc.identifier.staff | une-id:lkahn3 | en |
local.profile.orcid | 0000-0002-3679-4530 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/51902 | en |
local.date.onlineversion | 2018-03-13 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Machine learning approaches for early prediction of adult wool growth and quality in Australian Merino sheep | en |
local.relation.fundingsourcenote | Sheep CRC Ltd | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Shahinfar, S | en |
local.search.author | Kahn, L | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000431837900009 | en |
local.year.available | 2018 | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/b88a92cf-36c7-410d-ac62-ac47b6257968 | en |
local.subject.for2020 | 300399 Animal production not elsewhere classified | en |
local.subject.seo2020 | 280101 Expanding knowledge in the agricultural, food and veterinary sciences | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
24
checked on Dec 21, 2024
Page view(s)
1,496
checked on Dec 22, 2024
Download(s)
2
checked on Dec 22, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.