Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/32309
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrinkhoff, Jamesen
dc.contributor.authorDunn, Brian Wen
dc.contributor.authorRobson, Andrew Jen
dc.date.accessioned2021-12-01T23:54:49Z-
dc.date.available2021-12-01T23:54:49Z-
dc.date.issued2021-12-25-
dc.identifier.citationInternational Journal of Applied Earth Observation and Geoinformation, v.105, p. 1-11en
dc.identifier.issn1872-826Xen
dc.identifier.issn1569-8432en
dc.identifier.urihttps://hdl.handle.net/1959.11/32309-
dc.description.abstract<p>Determining the mid-season nitrogen status of rice is important for precision application of fertilizer to optimize productivity. While there has been much research aimed at developing remote-sensing-based models to predict the nitrogen status of rice, this has been predominantly limited to scientific small plot trials, relying on experts performing radiometric calibrations, encompassing limited cultivars, seasons and locations, and uniform management practices. As such, there has been little testing of models at commercial scale, against the range of conditions encountered across entire growing regions. To fill this gap, this work brings together four years of data, from both experimental replicated plot trials (38 datasets with 1734 observations) and commercial farms (12 datasets with 106 observations). Using commercial scale imagery acquired from airplanes, a number of nitrogen uptake modeling methodologies were evaluated. Universal single vegetation index based linear regression models had prediction root mean squared error (RMSE) of more than 45 kg/ha when tested at the 12 commercial sites. Machine learning models using multiple remote sensing features were able to improve predictions somewhat (RMSE > 30 kg/ha). Practically useful accuracies were achieved after using three local field samples to calibrate models to each field image. The prediction RMSE using this methodology was 22.9 kg/ha, or 19.4%. This approach enables provision of optimal variable-rate mid-season rice fertilizer prescriptions to growers, while motivating continued research towards development of methods that reduce requirement of local sampling.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofInternational Journal of Applied Earth Observation and Geoinformationen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleRice nitrogen status detection using commercial-scale imageryen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jag.2021.102627en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameJamesen
local.contributor.firstnameBrian Wen
local.contributor.firstnameAndrew Jen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailjbrinkho@une.edu.auen
local.profile.emailarobson7@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeNetherlandsen
local.identifier.runningnumber102627en
local.format.startpage1en
local.format.endpage11en
local.identifier.scopusid85121625511en
local.peerreviewedYesen
local.identifier.volume105en
local.access.fulltextYesen
local.contributor.lastnameBrinkhoffen
local.contributor.lastnameDunnen
local.contributor.lastnameRobsonen
dc.identifier.staffune-id:jbrinkhoen
dc.identifier.staffune-id:arobson7en
local.profile.orcid0000-0002-0721-2458en
local.profile.orcid0000-0001-5762-8980en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/32309en
local.date.onlineversion2021-11-27-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleRice nitrogen status detection using commercial-scale imageryen
local.relation.fundingsourcenoteThis research was funded by AgriFutures Australia, project number PRJ-011058, ‘Improving mid-season nitrogen management of rice’, and project number PRJ-009772, ‘Moving forward with NIR and remote sensing’.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorBrinkhoff, Jamesen
local.search.authorDunn, Brian Wen
local.search.authorRobson, Andrew Jen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000724337200002en
local.year.available2021en
local.year.published2021en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/2aedc39e-1e54-4e7c-9f94-cbca22299183en
local.subject.for2020300407 Crop and pasture nutritionen
local.subject.for2020401304 Photogrammetry and remote sensingen
local.subject.seo2020260308 Riceen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/RiceBrinkhoffRobson2021JournalArticle.pdfPublished version4.33 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

9
checked on Dec 14, 2024

Page view(s)

1,600
checked on Aug 11, 2024

Download(s)

186
checked on Aug 11, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons