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A B S T R A C T   

Determining the mid-season nitrogen status of rice is important for precision application of fertilizer to optimize 
productivity. While there has been much research aimed at developing remote-sensing-based models to predict 
the nitrogen status of rice, this has been predominantly limited to scientific small plot trials, relying on experts 
performing radiometric calibrations, encompassing limited cultivars, seasons and locations, and uniform man
agement practices. As such, there has been little testing of models at commercial scale, against the range of 
conditions encountered across entire growing regions. To fill this gap, this work brings together four years of 
data, from both experimental replicated plot trials (38 datasets with 1734 observations) and commercial farms 
(12 datasets with 106 observations). Using commercial scale imagery acquired from airplanes, a number of 
nitrogen uptake modeling methodologies were evaluated. Universal single vegetation index based linear 
regression models had prediction root mean squared error (RMSE) of more than 45 kg/ha when tested at the 12 
commercial sites. Machine learning models using multiple remote sensing features were able to improve pre
dictions somewhat (RMSE > 30 kg/ha). Practically useful accuracies were achieved after using three local field 
samples to calibrate models to each field image. The prediction RMSE using this methodology was 22.9 kg/ha, or 
19.4%. This approach enables provision of optimal variable-rate mid-season rice fertilizer prescriptions to 
growers, while motivating continued research towards development of methods that reduce requirement of local 
sampling.   

1. Introduction 

Precision agriculture aims to apply the correct amount of crop inputs 
at the correct time in the correct location to optimize productivity 
(Mulla, 2013). One of the most important inputs is nitrogen (N) fertil
izer, which is a key driver of rice yield and quality (Lee and Lee, 2012). If 
the N supplied is insufficient to meet crop demand, rice yield potential is 
not achieved. Too much N can lead to reduction in yield due to lodging 
and cold-induced sterility (Dunn et al., 2016b), and cause pollution 
through volatization and leaching (Bacenetti et al., 2020). Typically, a 
base N rate is applied at the start of the growing season. Mid season 
deficiencies in the plant uptake of N become evident, often with spatially 
variable N uptake within fields. Therefore, methodologies that support 
optimal mid-season variable-rate N application promise to improve 
yields, reduce spatial variability (Nutini et al., 2021; Simmonds et al., 
2013) and minimize negative environmental impacts resulting from 
over-application (Peng et al., 2010). 

Precision application of mid-season N requires two pieces of 

information: the actual plant N uptake, and the amount of additional N 
to apply in order to achieve optimal production. The second piece of 
information can be guided by knowledge of the critical N levels required 
to achieve yield potential, and N usage efficiency (Ata-Ul-Karim et al., 
2017). Alternatively, tables of N recommendation versus mid-season N- 
uptake can be used (Dunn, 2008). Such tables are developed by con
ducting field trials with varying levels of base N, applying a number of 
mid-season N rates, and selecting the optimal application rate versus N 
uptake that maximizes yield (Dunn et al., 2016b). These methods can be 
used to transform spatial N uptake estimation maps into variable-rate N 
prescription maps for farmers to use in precision fertilizer application 
equipment. 

The first piece of information (actual mid-season plant N uptake) can 
be obtained using various methods. The most accurate way is through 
destructive sampling of rice plants followed by laboratory analysis (Ata- 
Ul-Karim et al., 2017). This however is labour intensive, costly, and 
provides limited information on the spatial variability of N uptake 
(Berger et al., 2020). Numerous studies have shown relationships 
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between plant chlorophyll concentration, nitrogen content and optical 
reflectance (Gitelson et al., 2003; Schlemmer et al., 2013; Dunn et al., 
2016a). Therefore, another way is using hand-held spectral sensors, with 
models predicting the relationship between sensor data and actual plant 
N uptake (Yao et al., 2012). This can be performed much more quickly 
than plant sampling, however still only provides information at a limited 
number of point source locations. Remote sensing promises an alterna
tive method, allowing complete spatial coverage of fields at fine reso
lution (Inoue et al., 2012). Models are needed to predict actual N uptake 
from remote sensing reflectance data, which has been the subject of 
much research (Berger et al., 2020). 

These remote sensing based approaches have utilised a variety of 
data sources, including hyperspectral (Inoue et al., 2012), multispectral 
(Brinkhoff et al., 2019), and visible (Shi et al., 2021) imagery. Images 
have been acquired from satellite (Huang et al., 2017), aerial (Ryu et al., 
2011) and unmanned aerial vehicle (UAV) (Brinkhoff et al., 2020) 
platforms. The vast majority have considered experimental field trials 
with replicated N treatments across multiple plots. These have shown 
that remote sensing can describe a high degree of the variability of N 
uptake (R2 is often above 0.9), perhaps leading to an optimistic view of 
the status of current techniques and technology to deliver reliable pre
diction accuracy ready for industry adoption. 

However, a limitation of past research is a general lack of validation 
and extension at commercial farming operations, with few exceptions 
(Nutini et al., 2021). The use of UAVs for scientific research trials using 
replicated small plots to develop fundamental remote sensing tech
niques is appropriate. However the ability to deploy UAVs over large 
areas of broad acre production is limited due to flight time, speed and 
altitude constraints, and line-of-sight requirements. Models developed 
these trials often specify precisely controlled and calibrated image 
acquisition campaigns. Thus, they have limited exposure to variable: 
image acquisition time (Brinkhoff et al., 2020), solar-sensor geometry 
interaction with plant row orientation (Li et al., 2020), growth phase 
(Huang et al., 2017), variety (Ata-Ul-Karim et al., 2016), management 
strategies, seasonal differences (Ryu et al., 2011), soil characteristics 
(Wang et al., 2021), quality of atmospheric correction (Houborg and 
Boegh, 2008) and surface anisotropy (Li et al., 2018). These confound
ing factors limit success of implementing the developed tools and 
techniques at the commercial production level (Colaço and Bramley, 
2019). 

Whilst the ultimate goal is to develop a universal model, that does 
not need any local calibration (Houborg and Boegh, 2008), there is still 
much work needed to achieve this for operational rice N management. In 
the meantime, adequately accurate and practical methods (that may 
require some field sampling for local site calibration) are required to 
achieve acceptable accuracies at commercial scales, and thereby support 
industry adoption. 

Currently, Australian rice grower standard practice is to apply mid- 
season N at the panicle initiation (PI) growth phase to address de
ficiencies (Dunn et al., 2016b). To determine the appropriate application 
rate, growers are recommended to gather nine biomass samples per 
field, three in each of low, medium and high areas based on imagery or 
soil zones (Dunn, 2012). These samples are analyzed in a laboratory to 
determine average field N uptake in kg/ha. From this, a uniform field N 
application is recommended (Batten et al., 1991). The limitations of this 
are (i) the three samples may not give an accurate representation of the 
average field N uptake and (ii) there is limited information about spatial 
variability, so precision variable application recommendations are not 
provided. 

We aim to develop a process for providing timely and accurate N 
uptake maps at the PI growth stage, which can provide coverage of the 
majority of the Australian rice growing industry. The maps should allow 
assessment of in-field variability and facilitate variable rate nitrogen 
prescriptions. We used commercially provided multispectral aerial im
agery collected at scale (10,000 ha in 2021). Our methodology in
vestigates effects of imperfect image calibration, suggestion ways of 

providing practically useful prediction accuracy. 

2. Methods 

2.1. Sites and experiments 

As a temperate growing region, rice in Australia is grown once per 
year (McDonald, 1994). Representative soil and weather summaries are 
described in (Dunn et al., 2020). Rice is typically sown in October. Basal 
nitrogen fertilizer is applied before ponding water, usually in late 
November. However, some growers have adopted delayed permanent 
water (DPW) (Dunn and Gaydon, 2011), which delays ponding until late 
December, and has the potential to improve water use efficiency (WUE). 
The panicle initiation (PI) growth phase occurs late December to mid 
January (Darbyshire et al., 2019), and additional nitrogen is top dressed 
at this time in order to maximize yield potential and minimize spatial 
variability (Dunn et al., 2016b). Crops are harvested in April–May. 

We used data from four years, three experimental sites and twelve 
commercial fields (Fig. 1), covering the Murrumbidgee, Coleambally 
and Murray Valley irrigation areas, where the majority of rice is grown 
in Australia (McDonald, 1994). 

2.1.1. Nitrogen rate experiments 
The nitrogen rate experiments at sites E1, E2 and E3 (Fig. 1) were run 

over four years (harvested in 2018, 2019, 2020 and 2021). All experi
ments are listed in Table 1. The experiments consisted of replicated plots 
laid out in randomized complete block designs, each including three rice 
varieties and multiple base nitrogen rates. Individual plot areas ranged 
from 50–80 m2. Experiments included conventional, delayed permanent 
water (DPW) and late sown management practices. The 2021 experi
ments at E1 included 54 conventional management plots, and 36 DPW 
plots. 

For each experiment, all plots were sampled at least once, close to PI. 
Samples included all above ground biomass within 6 rows by 1 meter. 
Biomass and plant nitrogen concentration were extracted using methods 
described in (Dunn et al., 2016b). Multispectral imagery was acquired 
from airplanes close to the respective sampling dates (dates provided in 
Table 1). In some cases, the experiments were sampled and imaged on 
multiple dates to characterize temporal variability, especially in the 
2021 season. 

2.1.2. Commercial fields 
Twelve commercial fields were sampled and imaged close to their 

respective PI dates (Fig. 1), 4 in 2019 (sites 01–04), 3 in 2020 (05–07) 
and 5 in 2021 (08–12). Nine samples were taken from each of these 
fields. These were distributed among low, medium and high vigour 
zones (which were derived from NDVI, which is related to leaf area 
index (Houborg and Boegh, 2008), acquired from Sentinel-2 or aerial 
imagery). Biomass and N concentration determined for each sample 
(using the methods described above). Each sample included biomass 
within a 0.2 m2 ring. Two of the twelve sites had missing data for one of 
their samples (due to location recording error and abnormal N con
centration lab test result), so those two samples were discarded (leaving 
eight samples for those two sites). 

In the 2021 harvest season, approximately 10,000 hectares of com
mercial rice fields were imaged in New South Wales, Australia, close to 
the predicted PI date of each field. PI dates were predicted using the 
growth degree accumulation models described in (Darbyshire et al., 
2019). The data was processed to provide spatial N uptake and N 
topdressing recommendation maps to growers using methods described 
in following sections. 

2.2. Remote sensing data 

A commercial provider (Ceres Imaging) acquired imagery of the 
experiment and commercial sites from airplanes on the image dates 
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Fig. 1. Map showing the location of the study area within Australia (left) and experiment (E1-E3) and commercial (01–12) sites (right).  

Table 1 
Details of nitrogen rate experiments.  

Harvest   Sowing Ponding Nitrogen  Image Sample 
year Site Experiment date date rates (kg/ha) Plots date date 

2018 
E1 

Conventional 2017-10-30 2017-11-30 0, 60, 120, 180, 240, 300 54 2018-01-10 2018-01-12 

Late sown 2017-11-15 2017-12-21 0, 60, 120, 180, 240, 300 54 2018-01-10 2018-01-15 

E2 Conventional 2017-10-27 2017-12-01 0, 60, 120, 180 36 2018-01-10 2018-01-12 

2019 E3 

DPW 2018-10-10 2018-12-21 0, 60, 120, 180 36 2018-12-27 2018-12-28 
2019-01-06 2019-01-07 

Conventional 2018-10-29 2018-12-08 0, 60, 120, 180, 240 45 2018-12-27 2018-12-28 
2019-01-06 2019-01-07 

Late sown 2018-11-05 2018-12-21 0, 60, 120, 180 24 2019-01-06 2019-01-07 

2020 E1 
DPW 2019-10-11 2019-12-20 0, 60, 120, 180 36 2019-12-27 2020-01-01 

Conventional 2019-10-23 2019-11-21 0, 60, 120, 180, 240, 300 54 2019-12-27 2019-12-27 

2021 E1 

DPW 2020-10-14 2020-12-23 0, 60, 120, 180 36 

2021-01-05 10:12 

2021-01-07 

2021-01-05 11:36 
2021-01-06 10:49 
2021-01-06 11:53 
2021-01-07 11:11 
2021-01-07 14:15 
2021-01-08 11:23 
2021-01-08 11:55 
2021-01-09 13:03 

2021-01-11 11:38 2021-01-14 
2021-01-13 11:08 

Conventional 2020-10-24 2020-11-25 0, 60, 120, 180, 240, 300 54 

2020-12-19 11:08 2020-12-18 
2020-12-19 15:57 

2020-12-23 11:31 2020-12-23 

2020-12-28 11:41 
2020-12-28 2020-12-28 14:49 

2020-12-29 14:12 

2021-01-05 10:12 

2021-01-07 

2021-01-05 11:36 
2021-01-06 10:49 
2021-01-06 11:53 
2021-01-07 11:11 
2021-01-07 14:15 
2021-01-08 11:23 
2021-01-08 11:55 
2021-01-09 13:03 

2021-01-11 11:38 
2021-01-13 2021-01-13 11:08  
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shown in Table 1. Resolution ranged from 0.2–0.8 m. The sensor bands 
are given in Table 2. The band wavelengths were consistent over years, 
except for the red edge (RE) band as shown. Methods to deal with the 
inconsistent RE band are described below. The imagery was provided as 
surface reflectance multispectral GeoTIFFs. 

All image processing was done in Google Earth Engine (Gorelick 
et al., 2017). Vegetation indices (VIs) that have been shown to have 
strong relationships with plant N were computed from the reflectance 
bands. These included the normalized difference red edge (NDRE) =
(NIR-RE)/(NIR + RE) (Brinkhoff et al., 2019), chlorophyll index red 
edge CIre  = NIR/RE and chlorophyll index green CIg  = NIR/G 
(Schlemmer et al., 2013; Gitelson et al., 2003). Note that Gitelson et al. 
(2003) proposed subtracting 1 from CIre and CIg, as they found this 
zeroed the y-intercept for the relationship between chlorophyll content 
and the respective VIs. This was not the case for the relationship be
tween N uptake and the respective VIs in our datasets, so we omitted the 
–1. 

In order to make the red edge data consistent through the years 
(Table 2), we applied calibrations to the RE 700 nm data. To do this, we 
used 2020 data, regressing the coincident 700 nm against the 717 nm 
results, for all 90 experiment plots. NDRE and CIre using 700 nm vs 717 
nm were highly correlated, so we applied a transformation directly to 
these VIs: 

NDRE717nm = 0.84 × NDRE700nm − 0.02 (R2 = 0.98)
CIre717nm = 0.64 × CIre700nm + 0.43 (R2 = 0.98)

The transformations were applied to NDRE and CIre from 2018 and 
2019, resulting in 717 nm equivalent data in all years. 

All image dates for the experiment sites are provided in Table 1. Each 
of these flights also acquired imagery of many commercial fields. Mul
tiple image acquisitions occurred on some days in 2021, because mul
tiple flights were required to cover the area of the commercial fields. 
Image acquisition time was only supplied in 2021, but generally images 
were acquired between 10am and 3 pm, avoiding solar noon where 
specular reflection off the ponded water surface can saturate the mul
tispectral sensor. 

For each sample location, the mean pixel values of the VIs were 
calculated. The remote sensing data was merged with the plant sample 
data from the closest date (Table 1). This yields 38 datasets (one dataset 
per experiment image), with a combined total of 1734 observations, 
allowing detailed investigation of the variability of the models extracted 
from each of these datasets. 

2.3. Model calibration 

We assessed the correlation between N uptake and all possible 2- 
band normalized difference spectral indices and ratio spectral indices, 
finding that N uptake is most strongly related to indices combining NIR 
and G bands, and NIR and RE bands (Inoue et al., 2012; Brinkhoff et al., 
2019). Therefore, we assessed four formulae that have been used to 
model N uptake (NU) in previous studies: 

NU = α × eβ×NDRE (
Brinkhoff et al., 2020

)
(1)  

ln(NU) = ln(α)+ β × NDRE  

NU = α + β × NDRE2 (
Brinkhoff et al., 2019

)
(2)  

NU = α + β × CIre (Schlemmer et al., 2013) (3)  

NU = α + β × CIg (Schlemmer et al., 2013) (4)  

The α and β coefficients were extracted for each dataset in Table 1 using 
ordinary least squares (OLS). The α coefficient is the intercept and β the 
slope wrt the VI for each model. Eq. (1) was transformed into a linear 
formulation as shown, so OLS could be used. 

We assessed how well each calibrated model described the vari
ability of plant N uptake in the respective dataset using the coefficient of 
determination: 

R2 = 1 − (residual sum of squares)
/
(total sum of squares) (5)  

Note that this definition of R2 (also known as the Nash–Sutcliffe model 
efficiency coefficient) is negative if predictions are worse than simply 
predicting the mean of the observations. Prediction error was evaluated 
using root mean squared error: 

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(residual sum of squares/N)

√
(6)  

2.4. Model variability assessment 

A key question of this study is how remote sensing based N uptake 
predictions can be generated accurately in operational contexts, over 
large areas, multiple times, dates and diverse agronomic practices. We 
assessed the variability of the coefficients of the N uptake models be
tween the 38 datasets from the experimental sites by examining the 
distributions of α and β for each formula (1)–(4) over all the datasets 
(Table 1). The normalized inter-quartile range of the model coefficients 
were calculated and expressed as a percentage: 

nIQR = (75th percentile − 25th percentile)/median × 100% (7)  

2.5. Predictive model training and testing methodologies 

We tested three methods of extracting models to generate N uptake 
predictions across experiment and commercial site (Fig. 2). 

Method A uses a single experiment dataset to calibrate models, then 
tests predictions on remaining experiment datasets and commercial 
sites, repeating for all training datasets. This simulates the situation 
where an N uptake prediction model is calibrated from an image of a 
replicated N rate trial, which is then applied to other sites and images. 

Method B trains on data from all experiment datasets except one, 
then tests on this remaining dataset (or trains on all experiment datasets 
when testing on commercial datasets). Machine learning algorithms 
including ridge, lasso, random forest and support vector regression 
(Pedregosa et al., 2011) are used to make use of the extensive training 
data. The 20 features included all reflectance bands (4: G, R, RE, NIR), 
all reflectance ratios (12: G/R, R/G, G/RE, RE/G etc.) and normalized 
difference vegetation indices (4: NDRE, NDVI, GNDVI, GRVI). Algorithm 
hyperparameters were tuned using leave one group out cross validation 
procedures (Brinkhoff et al., 2019). This method assesses achievable 
accuracy when a very comprehensive training dataset is used, encom
passing multiple sites, seasons and images. 

Method C takes a different approach. Instead of generalizing pre
dictions using models generated from other sites/images, it uses local 
site-specific calibration. A limited number of samples from each site 
were used to train models, then predictions are tested against the 
remaining samples from that site. 

2.6. Nitrogen application recommendation maps 

N uptake prediction maps were generated by applying the respective 

Table 2 
Aerial imagery band wavelengths.   

Wavelength (nm) 

Year 2018–2019 2020 2021 

Green (G) 500 500 500 
Red (R) 670 670 670 

Red edge (RE) 700 700 & 717 717 
Near infrared (NIR) 800 800 800  

J. Brinkhoff et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observation and Geoinformation 105 (2021) 102627

5

model formulae (1)–(4) to every pixel of the experiment and commercial 
images. Variable-rate N recommendation maps were generated by 
applying tables that map N uptake to optimal N application rates. These 

tables are described in Dunn (2008). This process resulted in high res
olution N recommendation maps. In order to provide variable rate maps 
that are practical to deliver with current fertilizer spreading technology, 

Fig. 2. Three methods of training and testing models. Method A (a) trains on one experiment dataset, and tests on all other experiment and commercial datasets. 
Method B (b) trains on all experiment datasets (except the test dataset), using machine learning models with 20 input features. Method C (c), trains on 3 local 
samples, and predictions are tested on remaining local samples. 

Fig. 3. Regression results for the 2021 E1 dataset (54 samples, sample date 2020–12-28 and image date 2020–12-28 11:41) for formulae (1) and (4).  
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a neighborhood mode filter was applied, with a radius of 30 m and 3 
iterations. 

3. Results 

We first examine N-uptake model variability from the experiment 
datasets. Then prediction accuracies are assessed for the three modeling 
strategies at both experiment and commercial sites. 

The four model formulae (1)–(4) were fit to each of the 38 datasets 
(Table 1). Fig. 3 shows an example fit for NDRE (1) and CIg (4), for the 
2021 E1 conventional water management experiment, for a 2020–12-28 
dataset. The formulae fit the characteristics of the N uptake well. There 
is some heteroskedasticity, with more scatter at very high N uptake 
values. However, we note that for practical applications, accuracy above 
150 kg/ha is of lesser importance, as at that level the plants have suf
ficient N, so the fertilizer prescription in those areas would be 0 kg/ha 
(Dunn et al., 2016b). 

For all 38 datasets, and 4 formulae, the β slope coefficient was sig
nificant at p< 0.001. The intercept parameter α was significant at 
p< 0.05 for formulae (3) and (4) for all datasets. For formula (1), α was 
significant at p< 0.05 for all but 7 of the datasets, and for formula (2) α 
was significant for all but 2 of the datasets. 

A summary for the model fit results over the 38 experiment datasets 
(Table 3) shows all models have median R2 better than 0.83, with the 
exponential NDRE model (1) having the highest value of 0.92. The 
variability of R2 is reasonably constrained, with nIQR between 6.3–11.2 
% (i.e. the inter-quartile range is less than 11.2 % of the median R2). The 
median RMSE for the 4 formulae is between 19.9–23.8 kg/ha. 

For practical applications, variability between models is important, 
particularly if the goal is to extract a model from one or more images of 
experiments and then apply it to commercial farms. The first two 
formulae (1–2) have very high variability in the intercept parameter α 
(nIQR>60%, Table 3), while the slope β is somewhat constrained 
(nIQR<20%). The CIre and CIg formulae (3–4) produce models with 
neither coefficient having low variability. The scatter of coefficients for 
the 38 datasets is shown in Fig. 4. These results suggest models from one 
image will not generalize to other images well. 

3.1. Method A: Applying regression models extracted from single 
experiment datasets 

3.1.1. Testing on experiment datasets 
The first test of model scalability was to use the model from one 

experiment dataset (training), and test accuracy predicting N uptake for 
all other datasets (Fig. 2a). This simulates the situation where a single N- 
rate trial is used to develop a model, which is then used to supply pre
diction for other sites and/or dates. This assessment was performed 38 
times (once for each dataset in Table 1 as model training data, testing 
model predictions on the 37 remaining datasets). The median RMSEs are 
very large, from 43.3–49.1 kg/ha for the four formulae (Fig. 5a). The CIg 
model (4) gave the best results both in terms of median and variability of 
RMSEs. If datasets from 2021 only are used, the median RMSE is be
tween 31.4–34.9 kg/ha. However these values are still too high for 
practical use. 

3.1.2. Testing on commercial datasets 
To test this method on the commercial site data, the experiment 

model from the dataset closest in time to the image from each respective 
commercial site was used to predict the 8 or 9 N uptake samples for each 
of the 12 sites (total of 106 samples). The best results were obtained with 
formulae (2), with RMSE = 48 kg/ha (Fig. 5b). 

3.2. Method B: Applying machine learning models extracted from many 
experiment images 

Four ML algorithms were trained on the experiment datasets, using 
20 remote-sensing based features (Fig. 2b). 

3.2.1. Testing on experiment datasets 
Models were trained using 37 of the experiment datasets, with pre

dictions tested on the remaining dataset, repeating for the 38 test 
datasets. The best results were achieved with ridge regression (median 
RMSE = 27.6 kg/ha, Fig. 6a), followed by support vector regression. 
These results are significantly better than the simple linear regression 
models, although variability in prediction accuracy over the datasets is 
still large. 

3.2.2. Testing on commercial datasets 
The ML models were trained on all 38 experiment datasets. The 

models were then applied to predict N uptake of the 106 samples of the 
12 commercial sites. The best RMSE of 32.1 kg/ha was obtained with 
support vector regression (Fig. 6b), followed by ridge (34.1 kg/ha), lasso 
(34.2 kg/ha) and random forest (37.8 kg/ha). If only 2021 training and 
testing data was used, the best test RMSE of 21.5 kg/ha was obtained 
using lasso. 

The relative importance of reflectance, VI and ratio features was 
assessed. For SVR and ridge, the best results were obtained when only 
the 4 reflectance features were used (31.0 kg/ha for SVR). RF and lasso 
results were better when all 20 features were used. 

3.3. Method C: Extracting a local regression model for each image 

Next, we extracted model coefficients using a limited number of 
samples from each dataset, and predicted the remaining samples from 
that dataset (Fig. 2c). This is the situation where a local model is 
extracted from each site-image, requiring at least 2 local physical sam
ples to determine α and β. 

3.3.1. Testing on experiment datasets 
The training samples from experiment plots were randomly selected 

10 times for each of the 38 datasets, done separately with 2, 3 and 6 
training samples. The resulting models were used to predict remaining 
plot samples in each dataset. The median RMSE and variance in RMSE 
declines as the number of training samples increases (Fig. 7a). For 3 
training samples, the best results are obtained with the NDRE formulae 
(1), with median RMSE of 29.5 kg/ha, and 24.9 kg/ha with 6 training 
samples. 

Because the training samples were randomly selected, some models 
were parameterized using samples with very small variability in sample 
VI values, others with large variability. The prediction errors are 
generally smaller if the model training samples encompass a range of VI 

Table 3 
Summary of model coefficients and accuracy metrics for the 38 experiment datasets.   

Median nIQR (%) 

Formula α  β  R2  RMSE (kg/ha) α  β  R2  RMSE 

(1) 2.21 6.48 0.92 21.10 96.52 19.19 7.82 24.60 
(2) − 70.56 567.47 0.83 23.80 68.74 14.22 11.21 21.75 
(3) − 104.64 54.86 0.85 20.99 27.31 31.89 10.81 24.50 
(4) − 91.66 33.95 0.88 19.92 25.29 35.70 6.32 27.38  
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values (Fig. 7b). This suggests using a model-based sample selection 
strategy similar to latin hypercube sampling, so that the model is trained 
on data that reflects the distribution of the data (Minasny and McBrat
ney, 2006). This is important in practical cases, where very limited field 
samples are available at commercial sites. 

Therefore, we ran another test, selecting the samples with minimum, 
median and maximum VI to train the model. The median RMSEs for the 
four formulae are lower using this sample selection strategy (Fig. 7c), 

between 22.9 kg/ha for (4) and 25.1 kg/ha for (2). 

3.3.2. Testing on commercial datasets 
The minimum-median-maximum sampling strategy was applied to 

each commercial site, and predictions were tested on the 5 or 6 
remaining site samples. The best results were obtained using formulae 
(4) with RMSE = 22.9 kg/ha (Fig. 7d). This method was used to produce 
spatial N uptake and recommendation maps for the commercial sites 

Fig. 4. Model coefficients for the exponential NDRE (1) and CIg (4) models extracted from all experiment datasets.  

Fig. 5. Results of extracting a model from one experiment image (method A), and applying it to (a) all other experiment sites, and (b) commercial sites using 
formula (2). 

Fig. 6. Results of extracting ML models from many training experiment images (method B), and applying it to (a) test experiment images, and (b) commercial site 
images (support vector regression results shown). 
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(examples shown in Fig. 8). 

4. Discussion 

We tested a variety of model calibration strategies to enable pre
diction of rice N uptake using remote sensing imagery. To generate PI N 
application maps, we used tables of recommended application of N (at 
the panicle initiation growth stage) relative to N uptake (Dunn, 2008). N 
uptake prediction errors are expected to be less than 30 kg/ha (near the 
practical limits of current aerial variable rate spreaders). However, the N 
uptake models were variable over multiple image acquisition times, 
dates, seasons and sites, rendering generalized model predictions inac
curate (though ML models trained on much data were better than 
regression models trained on one image). In the presence of this vari
ability, three targeted local samples are able to provide predictions with 
sufficient accuracy. 

We examined four model formulae and four ML algorithms (sum
mary in Table 4). The NDRE2 formula (2) was less accurate when fit to 
single experiment datasets (Table 3), but sometimes gave better pre
dictions when scaling to new sites and images. The formulae using an 
exponential transformation of NDRE (1) gave reasonably consistent 
prediction accuracy, but has the drawback of requiring nonlinear 
transformation to fit linear models. The CIg (4) and CIre (3) formulae 
were linear with respect to N uptake (Schlemmer et al., 2013; Zheng 
et al., 2018). The CIg formula will be particularly useful for using sat
ellite data where the red-edge band is not available, or is at a lower 
resolution (Cai et al., 2019). The CIg formula consistently gave the best 
results when models were trained with a 3 local samples (method C, 
Table 4). Model performance was better when only data from 2021 was 
used, possibly due to improvements in image calibration and elimina
tion of seasonal differences. The 2020 model coefficients were quite 
different to those from other years (Fig. 4, which may be at least partly 
due to the presence of bushfire smoke causing errors in surface 

reflectance calibration. 
The linear regression coefficients varied greatly across the 38 

experiment site datasets, even for images taken of the same site on the 
same day. A probable cause is atmospheric correction and reflectance 
calibration imperfections, which is likely to be a factor in any large-scale 
image acquisition from aerial or UAV platforms given cost and logistic 
limitations. Atmospheric correction imperfections and view angle ef
fects also affect retrieval of vegetation indices from satellite data (Zhang 
et al., 2018). Model coefficients depend on a variety of additional fac
tors: image acquisition time (Brinkhoff et al., 2020), regional differences 
(Inoue et al., 2012), season and variety (Brinkhoff et al., 2019), growth 
stages (Zheng et al., 2018; Zhou et al., 2018), different view angles and 
surface anisotropy (Li et al., 2018), and the relationship between solar 
angle and plant row orientation (Li et al., 2020). 

Given the variability in N prediction models, it seems unlikely that a 
universal model based on simple linear regression can be applied across 
varieties, management practices, images, sites and seasons. Machine 
learning (ML) methods using multiple variables produced more consis
tent models. Other authors have found similar benefits for ML models 
(Shi et al., 2021), and have also found that band reflectances are as good 
as vegetation indices for ML-based nitrogen prediction models (Peng 
et al., 2021). However, these methods did not provide predictions with 
sufficient accuracy over all sites and years for our data. Adding addi
tional features to those derived from remote sensing data for ML models 
to be trained on (such as time of day, days after sowing, environmental 
conditions) may provide improved predictions. However, data from 
sufficient sites and seasons would be needed to provide sufficient 
coverage of the possible range of these variables to make them useful 
predictors. Our work motivates further studies on generalized prediction 
models using such data. 

While generalizable models are still an area of research, we proposed 
using three plant samples from each field, from low, medium and high 
growth areas, to calibrate models to local sites. This provided useful 

Fig. 7. Results of extracting a model from the local site and testing on remaining samples from the site (method C). For the experiments, (a) shows results with 
random selection of training samples, (b) shows how the distribution of the sample VI values affects prediction errors, (c) shows predictions when the 3 selected 
training samples are those with minimum, median and maximum VI. (d) shows the same sample selection as (c) for commercial sites, using model formula (4). 
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spatial N uptake prediction accuracy. However, this method has disad
vantages. Sampling introduces delay in the process of generating pre
scription maps due to laboratory test time. Obtaining very accurate geo- 
location for grower supplied samples is difficult. Ultimately, growers 
desire variable-rate N recommendation maps that don’t require any 
sampling. 

Most previous studies on remote sensing for rice N management used 
data from scientific plot-scale experiments to assess predictions. A 

significant source of uncertainty in applying these methodologies to 
commercial sites is the relatively larger spatial variability in plant N at 
small scales observed at growers sites. To train and validate models in 
such situations, work will require (i) pixel sizes smaller than the spatial 
variability, (ii) precise sample and image co-location and/or (iii) se
lection of sampling areas with minimal spatial variability. Given these 
results, we recommend more studies should include assessment of N 
uptake prediction models on commercial scale fields to give realistic 
expectations of accuracy when these models are adopted by industry. 

We used aerial imagery, as it provided the most practical trade-off 
between ability to cover the large area (10,000 ha in 2021) and suffi
cient spatial resolution to enable correlation of imagery with samples. 
UAVs could not currently cover such an area in a constrained timeframe 
(Weiss et al., 2020), and satellite data at sufficient resolution (< 2m) is 
currently too expensive. Due to the large rice area and the logistical 
challenges to acquire the imagery close to the predicted PI date of each 
field (Darbyshire et al., 2019), image acquisition times and atmospheric 
conditions could not be tightly controlled (as they can be in small-scale 
field trials). Scaling to medium-resolution satellite data is an interesting 
prospect, which will require consideration of the different resolution of 
pixels and plant samples (Cai et al., 2019) and reflectance calibration 

Fig. 8. Predicted N uptake for: (a) 2021 experiments at site E1, (b) commercial site 10, and (c) commercial site 09. (d) shows the PI N topdressing recommendation 
for commercial site 09, smoothed using a 30 m filter. 

Table 4 
Summary of results from the four methodologies in Fig. 2. The results shown are 
RMSE (kg/ha) with best formulae/algorithm in brackets.  

Method Years Experiment Commercial 

A. Train on one experiment dataset All 43.3 (4) 48.0 (2)  
2021 31.4 (4) 41.0 (2)  

B. ML train on many experiment datasets All 27.6 (Ridge) 34.1 (SVR)  
2021 26.1 (SVR) 21.5 (Lasso)  

C. Train on 3 local samples All 21.5 (4) 22.9 (4)  
2021 20.8 (4) 21.2 (4)  
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(Zhang et al., 2018). 

5. Conclusion 

Using an extensive dataset, we have shown that commercial-scale 
multispectral imagery may not be sufficiently consistent to provide 
rice N uptake predictions with universal linear regression models based 
on remote sensing data. Predictions were not only tested on plot-scale 
field trials, but also at commercial rice operations, with a dataset 
encompassing four years, eight varieties and various sowing and water 
management strategies. We demonstrated that three targeted field 
samples (encompassing the range of field vegetation index variation) is 
able to improve N prediction accuracy to required levels (RMSE<25 kg/ 
ha). This provides a practical way for remote-sensing based precision N 
applications to be adopted in practice, while motivating the continued 
development of generalizable models, which require ongoing research 
to encapsulate sources of variability and commercial scale validation. 
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