Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/30945
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrinkhoff, Jamesen
dc.contributor.authorHornbuckle, Johnen
dc.contributor.authorBarton, Jan Len
dc.date.accessioned2021-07-06T01:58:08Z-
dc.date.available2021-07-06T01:58:08Z-
dc.date.issued2018-10-23-
dc.identifier.citationWater, 10(11), p. 1-20en
dc.identifier.issn2073-4441en
dc.identifier.urihttps://hdl.handle.net/1959.11/30945-
dc.description.abstractIrrigated agriculture requires high reliability from water delivery networks and high flows to satisfy demand at seasonal peak times. Aquatic vegetation in irrigation channels are a major impediment to this, constraining flow rates. This work investigates the use of remote sensing from unmanned aerial vehicles (UAVs) and satellite platforms to monitor and classify vegetation, with a view to using this data to implement targeted weed control strategies and assessing the effectiveness of these control strategies. The images are processed in Google Earth Engine (GEE), including co-registration, atmospheric correction, band statistic calculation, clustering and classification. A combination of unsupervised and supervised classification methods is used to allow semi-automatic training of a new classifier for each new image, improving robustness and efficiency. The accuracy of classification algorithms with various band combinations and spatial resolutions is investigated. With three classes (water, land and weed), good accuracy (typical validation kappa >0.9) was achieved with classification and regression tree (CART) classifier; red, green, blue and near-infrared (RGBN) bands; and resolutions better than 1 m. A demonstration of using a time-series of UAV images over a number of irrigation channel stretches to monitor weed areas after application of mechanical and chemical control is given. The classification method is also applied to high-resolution satellite images, demonstrating scalability of developed techniques to detect weed areas across very large irrigation networks.en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofWateren
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAssessment of Aquatic Weed in Irrigation Channels Using UAV and Satellite Imageryen
dc.typeJournal Articleen
dc.identifier.doi10.3390/w10111497en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameJamesen
local.contributor.firstnameJohnen
local.contributor.firstnameJan Len
local.profile.schoolSchool of Science and Technologyen
local.profile.emailjbrinkho@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber1497en
local.format.startpage1en
local.format.endpage20en
local.identifier.scopusid85055565405en
local.peerreviewedYesen
local.identifier.volume10en
local.identifier.issue11en
local.access.fulltextYesen
local.contributor.lastnameBrinkhoffen
local.contributor.lastnameHornbuckleen
local.contributor.lastnameBartonen
dc.identifier.staffune-id:jbrinkhoen
local.profile.orcid0000-0002-0721-2458en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/30945en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAssessment of Aquatic Weed in Irrigation Channels Using UAV and Satellite Imageryen
local.relation.fundingsourcenoteMurrumbidgee Irrigation, Ltden
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorBrinkhoff, Jamesen
local.search.authorHornbuckle, Johnen
local.search.authorBarton, Jan Len
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/037d4100-050e-459c-bcf1-304b2f09825een
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2018en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/037d4100-050e-459c-bcf1-304b2f09825een
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/037d4100-050e-459c-bcf1-304b2f09825een
local.subject.for2020400513 Water resources engineeringen
local.subject.seo2020180399 Fresh, ground and surface water systems and management not elsewhere classifieden
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/AssessmentBrinkhoff2018JournalArticle.pdfPublished version7.61 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

25
checked on Jan 11, 2025

Page view(s)

1,060
checked on Mar 9, 2023

Download(s)

20
checked on Mar 9, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons