Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/30744
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gurman, Phillip M | en |
dc.contributor.author | Li, Li | en |
dc.contributor.author | Swan, Andrew A | en |
dc.contributor.author | Moghaddar, Nasir | en |
dc.contributor.author | van der Werf, Julius H J | en |
dc.date.accessioned | 2021-06-09T05:49:21Z | - |
dc.date.available | 2021-06-09T05:49:21Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | ICQG 6, Abstracts 2020, p. 150-150 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/30744 | - |
dc.description.abstract | GWAS analyses have resulted in SNP sets that are more predictive for specific traits. Combining these SNPs in a genomic relationship matrix (GRM) with non-selected SNPs may dilute their predictive ability. Instead, predictive SNPs could be treated separately with their own variance. This study examines the partitioning of variance between multiple genetic effects defined by multiple relationship matrices. Univariate REML analyses were performed using GCTA for intramuscular fat (imf), carcase eye muscle depth (cemd), and carcase fat (ccfat) measured on approximately 9.5k genotyped sheep from multiple breeds. Genetic relationship matrices fitted included numerator relationship matrix (NRM) and two GRMs, one based on a standard SNP array (GRMC, 48.5k) and one based on SNPs selected from whole-genome sequence (GRMP, 2.7k). GRMs were constructed with either breed-specific allele frequencies, or population allele frequencies. Breed structure was accommodated by fitting random genetic groups. For GRMs constructed with population allele frequencies, the proportion of genetic variance attributed to GRMC was between 0.14 for ccfat and 0.38 for imf, while for GRMP it was between 0.36 for imf and 0.73 for cemd. The remaining genetic variance was explained by the NRM (range 0.02- 0.38). Similar proportions were observed for the multi-breed GRM. Proportions of genetic variances estimated for the NRM and GRMs can be used in singlestep models to increase prediction accuracy, but questions remain regarding the impact of co-linearity between effects. For example, using a breed-adjusted GRM resulted in an increase in genetic group variance relative to the other genetic effects. | en |
dc.language | en | en |
dc.publisher | International Conference on Quantitative Genetics | en |
dc.relation.ispartof | ICQG 6, Abstracts 2020 | en |
dc.title | Partitioning of variance between multiple relationship matrices in BLUP analyses | en |
dc.type | Conference Publication | en |
dc.relation.conference | ICQG 6: 6th International Conference on Quantitative Genetics | en |
dcterms.accessRights | Bronze | en |
local.contributor.firstname | Phillip M | en |
local.contributor.firstname | Li | en |
local.contributor.firstname | Andrew A | en |
local.contributor.firstname | Nasir | en |
local.contributor.firstname | Julius H J | en |
local.subject.for2008 | 070201 Animal Breeding | en |
local.subject.seo2008 | 830301 Beef Cattle | en |
local.profile.school | Animal Genetics and Breeding Unit | en |
local.profile.school | Animal Genetics and Breeding Unit | en |
local.profile.school | Animal Genetics and Breeding Unit | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | pgurman@une.edu.au | en |
local.profile.email | lli4@une.edu.au | en |
local.profile.email | aswan@une.edu.au | en |
local.profile.email | nmoghad4@une.edu.au | en |
local.profile.email | jvanderw@une.edu.au | en |
local.output.category | E3 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 3rd - 13th November, 2020 | en |
local.conference.place | Online Event | en |
local.publisher.place | Australia | en |
local.identifier.runningnumber | 370 | en |
local.format.startpage | 150 | en |
local.format.endpage | 150 | en |
local.url.open | https://icqg6.org/icqg6-abstracts-book/ | en |
local.peerreviewed | Yes | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Gurman | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Swan | en |
local.contributor.lastname | Moghaddar | en |
local.contributor.lastname | van der Werf | en |
dc.identifier.staff | une-id:pgurman | en |
dc.identifier.staff | une-id:lli4 | en |
dc.identifier.staff | une-id:aswan | en |
dc.identifier.staff | une-id:nmoghad4 | en |
dc.identifier.staff | une-id:jvanderw | en |
local.profile.orcid | 0000-0002-4375-115X | en |
local.profile.orcid | 0000-0002-3601-9729 | en |
local.profile.orcid | 0000-0001-8048-3169 | en |
local.profile.orcid | 0000-0002-3600-7752 | en |
local.profile.orcid | 0000-0003-2512-1696 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/30744 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Partitioning of variance between multiple relationship matrices in BLUP analyses | en |
local.output.categorydescription | E3 Extract of Scholarly Conference Publication | en |
local.relation.url | https://icqg6.org/ | en |
local.conference.details | ICQG 6: 6th International Conference on Quantitative Genetics, Online Event, 3rd - 13th November, 2020 | en |
local.search.author | Gurman, Phillip M | en |
local.search.author | Li, Li | en |
local.search.author | Swan, Andrew A | en |
local.search.author | Moghaddar, Nasir | en |
local.search.author | van der Werf, Julius H J | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.conference.venue | Online Event | en |
local.sensitive.cultural | No | en |
local.year.published | 2020 | - |
local.year.presented | 2020 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/5ff56b8d-0ece-4049-9d27-2fec009eb0d6 | en |
local.subject.for2020 | 300305 Animal reproduction and breeding | en |
local.subject.seo2020 | 100401 Beef cattle | en |
local.date.start | 2020-11-03 | - |
local.date.end | 2020-11-13 | - |
local.profile.affiliationtype | Unknown | en |
local.profile.affiliationtype | Unknown | en |
local.profile.affiliationtype | Unknown | en |
local.profile.affiliationtype | Unknown | en |
local.profile.affiliationtype | Unknown | en |
Appears in Collections: | Animal Genetics and Breeding Unit (AGBU) Conference Publication School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,660
checked on Mar 8, 2023
Download(s)
12
checked on Mar 8, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.