Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/30490
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alam, Muhammad Shahinur | en |
dc.contributor.author | Lamb, David William | en |
dc.contributor.author | Warwick, Nigel W M | en |
dc.date.accessioned | 2021-04-29T04:46:06Z | - |
dc.date.available | 2021-04-29T04:46:06Z | - |
dc.date.issued | 2021-01-20 | - |
dc.identifier.citation | Water, 13(3), p. 1-13 | en |
dc.identifier.issn | 2073-4441 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/30490 | - |
dc.description.abstract | Estimating transpiration as an individual component of canopy evapotranspiration using a theoretical approach is extremely useful as it eliminates the complexity involved in partitioning evapotranspiration. A model to predict transpiration based on radiation intercepted at various levels of canopy leaf area index (LAI) was developed in a controlled environment using a pasture species, tall fescue (<i>Festuca arundinacea</i> var. Demeter). The canopy was assumed to be a composite of two indistinct layers defined as sunlit and shaded; the proportion of which was calculated by utilizing a weighted model (W model). The radiation energy utilized by each layer was calculated from the PAR at the top of the canopy and the fraction of absorbed photosynthetically active radiation (fAPAR) corresponding to the LAI of the sunlit and shaded layers. A relationship between LAI and fAPAR was also established for this specific canopy to aid the calculation of energy interception. Canopy conductance was estimated from scaling up of stomatal conductance measured at the individual leaf level. Other environmental factors that drive transpiration were monitored accordingly for each individual layer. The Penman–Monteith and Jarvis evapotranspiration models were used as the basis to construct a modified transpiration model suitable for controlled environment conditions. Specially, constructed self-watering tubs were used to measure actual transpiration to validate the model output. The model provided good agreement of measured transpiration (actual transpiration = 0.96 × calculated transpiration, R<sup>2</sup> = 0.98; <i>p</i> < 0.001) with the predicted values. This was particularly so at lower LAIs. Probable reasons for the discrepancy at higher LAI are explained. Both the predicted and experimental transpiration varied from 0.21 to 0.56 mm h<sup>−1</sup> for the range of available LAIs. The physical proportion of the shaded layer exceeded that of the sunlit layer near LAI of 3.0, however, the contribution of the sunlit layer to the total transpiration remains higher throughout the entire growing season. | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Water | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | A Canopy Transpiration Model Based on Scaling Up Stomatal Conductance and Radiation Interception as Affected by Leaf Area Index | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/w13030252 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Muhammad Shahinur | en |
local.contributor.firstname | David William | en |
local.contributor.firstname | Nigel W M | en |
local.subject.for2008 | 070304 Crop and Pasture Biomass and Bioproducts | en |
local.subject.for2008 | 070399 Crop and Pasture Production not elsewhere classified | en |
local.subject.for2008 | 060705 Plant Physiology | en |
local.subject.seo2008 | 960303 Climate Change Models | en |
local.subject.seo2008 | 829805 Management of Water Consumption by Plant Production | en |
local.subject.seo2008 | 830406 Sown Pastures (excl. Lucerne) | en |
local.profile.school | Office of Faculty of Science, Agriculture, Business and Law | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | dlamb@une.edu.au | en |
local.profile.email | nwarwick@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 252 | en |
local.format.startpage | 1 | en |
local.format.endpage | 13 | en |
local.identifier.scopusid | 85100649736 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 13 | en |
local.identifier.issue | 3 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Alam | en |
local.contributor.lastname | Lamb | en |
local.contributor.lastname | Warwick | en |
dc.identifier.staff | une-id:dlamb | en |
dc.identifier.staff | une-id:nwarwick | en |
local.profile.orcid | 0000-0001-7009-3183 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/30490 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A Canopy Transpiration Model Based on Scaling Up Stomatal Conductance and Radiation Interception as Affected by Leaf Area Index | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Alam, Muhammad Shahinur | en |
local.search.author | Lamb, David William | en |
local.search.author | Warwick, Nigel W M | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/eea38623-37d1-43b5-86a7-116f2c73af10 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000615645300001 | en |
local.year.published | 2021 | - |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/eea38623-37d1-43b5-86a7-116f2c73af10 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/eea38623-37d1-43b5-86a7-116f2c73af10 | en |
local.subject.for2020 | 310806 Plant physiology | en |
local.subject.for2020 | 300405 Crop and pasture biomass and bioproducts | en |
local.subject.seo2020 | 190501 Climate change models | en |
local.subject.seo2020 | 100505 Sown pastures (excl. lucerne) | en |
local.subject.seo2020 | 260104 Management of water consumption by plant production | en |
dc.notification.token | 87814010-116d-4650-ba05-1154d3cba30e | en |
local.codeupdate.date | 2022-02-11T15:10:13 | en |
local.codeupdate.eperson | rtobler@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 310806 Plant physiology | en |
local.original.for2020 | undefined | en |
local.original.for2020 | 300405 Crop and pasture biomass and bioproducts | en |
local.original.seo2020 | 190501 Climate change models | en |
local.original.seo2020 | 260104 Management of water consumption by plant production | en |
local.original.seo2020 | 100505 Sown pastures (excl. lucerne) | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/ACanopyLambWarwick2021JournalArticle.pdf | Published version | 2.21 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
10
checked on Jan 18, 2025
Page view(s)
1,312
checked on Apr 2, 2023
Download(s)
18
checked on Apr 2, 2023
This item is licensed under a Creative Commons License