Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/29892
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kogo, Benjamin Kipkemboi | en |
dc.contributor.author | Kumar, Lalit | en |
dc.contributor.author | Koech, Richard | en |
dc.contributor.author | Kariyawasam, Champika S | en |
dc.date.accessioned | 2020-12-22T03:17:55Z | - |
dc.date.available | 2020-12-22T03:17:55Z | - |
dc.date.issued | 2019-11-08 | - |
dc.identifier.citation | Agronomy, 9(11), p. 1-18 | en |
dc.identifier.issn | 2073-4395 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/29892 | - |
dc.description.abstract | Climate change and variability are projected to alter the geographic suitability of lands for crop cultivation. In many developing countries, such as Kenya, information on the mean changes in climate is limited. Therefore, in this study, we model the current and future changes in areas suitable for rainfed maize production in the country using a maximum entropy (MaxENT) model. Maize is by far a major staple food crop in Kenya. We used maize occurrence location data and bioclimatic variables for two climatic scenarios-Representative Concentration Pathways (RCP) 4.5 and 8.5 from two general circulation models (HadGEM2-ES and CCSM4) for 2070. The study identified the annual mean temperature, annual precipitation and the mean temperature of the wettest quarter as the major variables that affect the distribution of maize. Simulation results indicate an average increase of unsuitable areas of between 1.9–3.9% and a decrease of moderately suitable areas of 14.6–17.5%. The change in the suitable areas is an increase of between 17–20% and in highly suitable areas of 9.6% under the climatic scenarios. The findings of this study are of utmost importance to the country as they present an opportunity for policy makers to develop appropriate adaptation and mitigation strategies required to sustain maize production under future climates | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Agronomy | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Modelling Climate Suitability for Rainfed Maize Cultivation in Kenya Using a Maximum Entropy (MaxENT) Approach | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/agronomy9110727 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Benjamin Kipkemboi | en |
local.contributor.firstname | Lalit | en |
local.contributor.firstname | Richard | en |
local.contributor.firstname | Champika S | en |
local.subject.for2008 | 070105 Agricultural Systems Analysis and Modelling | en |
local.subject.for2008 | 050101 Ecological Impacts of Climate Change | en |
local.subject.seo2008 | 960305 Ecosystem Adaptation to Climate Change | en |
local.subject.seo2008 | 970107 Expanding Knowledge in the Agricultural and Veterinary Sciences | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | bkogo@myune.edu.au | en |
local.profile.email | lkumar@une.edu.au | en |
local.profile.email | rkoech@une.edu.au | en |
local.profile.email | ckariyaw@myune.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 727 | en |
local.format.startpage | 1 | en |
local.format.endpage | 18 | en |
local.identifier.scopusid | 85075077270 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 9 | en |
local.identifier.issue | 11 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Kogo | en |
local.contributor.lastname | Kumar | en |
local.contributor.lastname | Koech | en |
local.contributor.lastname | Kariyawasam | en |
dc.identifier.staff | une-id:bkogo | en |
dc.identifier.staff | une-id:lkumar | en |
dc.identifier.staff | une-id:rkoech | en |
dc.identifier.staff | une-id:ckariyaw | en |
local.profile.orcid | 0000-0002-9205-756X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/29892 | en |
dc.identifier.academiclevel | Student | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Student | en |
local.title.maintitle | Modelling Climate Suitability for Rainfed Maize Cultivation in Kenya Using a Maximum Entropy (MaxENT) Approach | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Kogo, Benjamin Kipkemboi | en |
local.search.author | Kumar, Lalit | en |
local.search.author | Koech, Richard | en |
local.search.author | Kariyawasam, Champika S | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/85041371-52c1-4fd4-bcb2-2e4820b66a5e | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000502264700061 | en |
local.year.published | 2019 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/85041371-52c1-4fd4-bcb2-2e4820b66a5e | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/85041371-52c1-4fd4-bcb2-2e4820b66a5e | en |
local.subject.for2020 | 300207 Agricultural systems analysis and modelling | en |
local.subject.for2020 | 410102 Ecological impacts of climate change and ecological adaptation | en |
local.subject.seo2020 | 190102 Ecosystem adaptation to climate change | en |
local.subject.seo2020 | 280101 Expanding knowledge in the agricultural, food and veterinary sciences | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/ModellingKogoKumarKoechKariyawasam2019JournalArticle.pdf | Published version | 4.16 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
59
checked on Dec 14, 2024
Page view(s)
1,632
checked on Jun 23, 2024
Download(s)
120
checked on Jun 23, 2024
This item is licensed under a Creative Commons License