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Abstract: Climate change and variability are projected to alter the geographic suitability of lands for
crop cultivation. In many developing countries, such as Kenya, information on the mean changes in
climate is limited. Therefore, in this study, we model the current and future changes in areas suitable
for rainfed maize production in the country using a maximum entropy (MaxENT) model. Maize is
by far a major staple food crop in Kenya. We used maize occurrence location data and bioclimatic
variables for two climatic scenarios-Representative Concentration Pathways (RCP) 4.5 and 8.5 from
two general circulation models (HadGEM2-ES and CCSM4) for 2070. The study identified the annual
mean temperature, annual precipitation and the mean temperature of the wettest quarter as the
major variables that affect the distribution of maize. Simulation results indicate an average increase
of unsuitable areas of between 1.9–3.9% and a decrease of moderately suitable areas of 14.6–17.5%.
The change in the suitable areas is an increase of between 17–20% and in highly suitable areas of 9.6%
under the climatic scenarios. The findings of this study are of utmost importance to the country as
they present an opportunity for policy makers to develop appropriate adaptation and mitigation
strategies required to sustain maize production under future climates.
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1. Introduction

Climate change has become the greatest global challenge that is affecting cropping patterns and
yields, leading to threats on food security for the growing population [1,2]. According to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), climate change is likely
to alter the distribution of crops in the world, leading to increased suitability of lands in Northern
Hemisphere higher altitudes and decreased suitability in tropical regions [3]. For instance, in eastern
Africa, suitability of lands for rainfed maize cultivation is likely to shift from lower to higher elevation
regions under the A1F1 scenario [3]. Kenya, being one of the countries in this region, is no exception
when it comes to the impacts of climate change on maize cultivation, which is a major staple food
for over 90% of the population [4]. According to Zabel et al. [5], country specific estimates on the
changes in land suitability for agricultural production under the changing climate are critical in order
to develop adequate adaptation and mitigation strategies.

In the recent years, multiple modelling programs to analyse suitability for the production of
crops under changing climate have been made possible by the current advances in remote sensing
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and geographic information techniques [6]. Alongside this, projections of climate variabilities have
been broadly researched and reported based on general climate models (GCMs) [3]. The use of species
distribution models (SDMs), which are regarded as empirical tools in ecology and natural resource
management, has been accepted as important in generating predictions of the presence of species
based on correlations between environmental variables and geo-localized species data [7]. Apart from
delineating the necessary conditions for the species, SDMs predict spatial and temporal potential
distribution of species [8,9]. Importantly, SDMs have been used to identify hotspots of threatened
species, evaluate the possible hazard of invasive species and predict biodiversity and to establish
potential locations for species cultivation in response to climate change [10–13].

Some of the SDMs that have been developed for this purpose include: dynamic simulation model
(CLIMEX and BIOCLIM), generalized additive model (GAM); neural networks; generalized linear
model (GLM); and Maximum Entropy (MaxENT) model [7,13–16]. Among the models, MaxENT is one
of the widely used species distribution models to predict potential distribution of target species [14], for
example, invasive species range dynamics [11,17], potential distribution of agricultural crops [18–22]
and threatened forest species in the Philippines [23], among others.

According to Beck [24], there has been increased application of ecological niche models to
investigate the impact of climate change on crop plants. However, despite the importance of maize
being a staple food crop in Kenya, there is relatively limited documented information on future climatic
suitability for maize production. As a step towards filling this research gap, the objective of the present
study was to analyse the current and potential impacts of climate change on suitability of various
parts of the country for maize cultivation using the Maximum Entropy (MaxENT) model. The specific
objectives of the study were to: (1) select the climatic factors that potentially affect spatial suitability for
maize production; (2) model the current and projected future suitability of lands based on two climate
scenarios (RCP 4.5 and 8.5) for the year 2070; (3) examine suitability of lands for maize production
in various counties; and (4) determine spatial climatic suitability shifts for maize production in the
country. This study is essential, as the findings will provide basic information towards development of
adaptation and mitigation strategies for maize production under the facets of climate change.

2. Materials and Methods

2.1. Study Area

This study focused on Kenya, which is divided into 47 administrative regions of counties and lies
on latitude 5◦S-5◦N and between longitude 34◦E-42◦E (Figure 1). The country’s climate is moderated
by variability in topography and the influence of the Indian Ocean and Lake Victoria. Temperatures
range from 15 to 35 ◦C and have increased at an average rate of 0.21 ◦C per decade since 1960 and are
projected to increase by 1.6 to 2.7 ◦C by 2060s [25]. The mean annual rainfall is bi-modal and ranges
from 200 to 2200 mm. The long rains occur in the months of March to May, and the short rains from
October to December. Approximately 84% of the country’s land area is either arid or semi-arid and only
16% falls between high and medium potential, suitable for crop production [26]. The agro-ecological
zones in Kenya include: (I) low tropics; (II) dry mid; (III) moist-mid; (IV) dry transitional; (V) moist
transitional; (VI) high transitional; and (VII) the arid zones [27]. Maize is Kenya’s major crop and is
mainly grown in areas located in agro-ecological zones II- IV under rainfed conditions [28]. The major
counties where maize is produced in Kenya are Trans-Nzoia, Uasin Gishu, Nandi, Nakuru, Laikipia,
Kisii, Narok, Bungoma, Kakamega, Nandi, Kericho, Kiambu and Meru (Figure 2).
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Figure 1. Location map of Kenya in Africa. The inset map shows the country’s seven agro-ecological 
zones. 

2.2. Environmental Modelling Data 

The data used in this study were divided into bioclimatic and geographic distribution data of 
maize growing locations. The data on current bioclimatic information were obtained as raster layers 
from WorldClim [29] available at 30 arc-seconds (~1 km2) spatial resolution at the equator [30]. To 
predict the future area suitability for maize cultivation under climate change scenarios, the study 
used downscaled global climate model data from the Coupled Model Inter-Comparison Project Phase 
5 (CMIP5) for the year 2070 under greenhouse gas (GHG) concentration scenarios (RCP 4.5 and 8.5) 
available on http://worldclim.org/cmip5_30s (accessed February, 2019) [30]. Among the GCMs 
available, we used the Hadley Centre Global Environmental Model 2-Earth System (HadGEM2-ES) 
and the Community Climate System Model, Version 4 (CCSM4). Our use of HadGEM2-ES was 
motivated by the work of Dike et al. [31], who observed that the model simulations were close to the 
multimodel ensemble mean over Africa. Likewise, CCSM4 has improved El Niño-Southern 
Oscillation (ENSO) variability with more reasonable frequency distribution compared to earlier 
versions of CCSMs [32]. ENSO is a major driver of interannual rainfall variability in eastern Africa 
[33]. 

Data were retrieved for RCP 4.5 and RCP 8.5, which represent medium and high emissions 
scenarios, respectively [3]. A multicollinearity test was undertaken using R-program Package 
‘virtualspecies’ (version 1.4–4) to screen highly correlated environmental predictors among the 19 
bioclimatic variables that represent a combination of annual trends, extreme environmental 
conditions and seasonality. In recent SDM literature, this package has been used for variable selection 
[17]. The temperature-related variables include the annual mean temperature (BIO1), diurnal 
temperature range (BIO2), Isothermality (BIO3), temperature seasonality (BIO4), maximum 
temperature of warmest month (BIO5), minimum temperature of the coldest month (BIO6), annual 
temperature range (BIO7), mean temperature of the wettest quarter (BIO8), mean temperature of the 
driest quarter (BIO9), mean temperature of the warmest quarter (BIO10), and the mean temperature 
of the coldest quarter (BIO11). The precipitation-related bioclimatic variables include annual 
precipitation (BIO12), precipitation of the wettest month (BIO13A), precipitation of the driest month 
(BIO14), precipitation seasonality (BIO15), precipitation of the wettest quarter (BIO16), precipitation of 
the driest quarter (BIO17), precipitation of the warmest quarter (BIO18) and precipitation of the coldest 
quarter (BIO19) (http://worldclim.org/bioclim). A Pearson correlation coefficient (r) ≥ 0.7 was selected 

Figure 1. Location map of Kenya in Africa. The inset map shows the country’s seven agro-ecological zones.

2.2. Environmental Modelling Data

The data used in this study were divided into bioclimatic and geographic distribution data of maize
growing locations. The data on current bioclimatic information were obtained as raster layers from
WorldClim [29] available at 30 arc-seconds (~1 km2) spatial resolution at the equator [30]. To predict the
future area suitability for maize cultivation under climate change scenarios, the study used downscaled
global climate model data from the Coupled Model Inter-Comparison Project Phase 5 (CMIP5) for
the year 2070 under greenhouse gas (GHG) concentration scenarios (RCP 4.5 and 8.5) available on
http://worldclim.org/cmip5_30s (accessed February, 2019) [30]. Among the GCMs available, we used
the Hadley Centre Global Environmental Model 2-Earth System (HadGEM2-ES) and the Community
Climate System Model, Version 4 (CCSM4). Our use of HadGEM2-ES was motivated by the work of
Dike et al. [31], who observed that the model simulations were close to the multimodel ensemble mean
over Africa. Likewise, CCSM4 has improved El Niño-Southern Oscillation (ENSO) variability with
more reasonable frequency distribution compared to earlier versions of CCSMs [32]. ENSO is a major
driver of interannual rainfall variability in eastern Africa [33].

Data were retrieved for RCP 4.5 and RCP 8.5, which represent medium and high emissions
scenarios, respectively [3]. A multicollinearity test was undertaken using R-program Package
‘virtualspecies’ (version 1.4–4) to screen highly correlated environmental predictors among the
19 bioclimatic variables that represent a combination of annual trends, extreme environmental
conditions and seasonality. In recent SDM literature, this package has been used for variable
selection [17]. The temperature-related variables include the annual mean temperature (BIO1), diurnal
temperature range (BIO2), Isothermality (BIO3), temperature seasonality (BIO4), maximum temperature
of warmest month (BIO5), minimum temperature of the coldest month (BIO6), annual temperature
range (BIO7), mean temperature of the wettest quarter (BIO8), mean temperature of the driest quarter
(BIO9), mean temperature of the warmest quarter (BIO10), and the mean temperature of the coldest
quarter (BIO11). The precipitation-related bioclimatic variables include annual precipitation (BIO12),
precipitation of the wettest month (BIO13A), precipitation of the driest month (BIO14), precipitation
seasonality (BIO15), precipitation of the wettest quarter (BIO16), precipitation of the driest quarter
(BIO17), precipitation of the warmest quarter (BIO18) and precipitation of the coldest quarter (BIO19)
(http://worldclim.org/bioclim). A Pearson correlation coefficient (r) ≥ 0.7 was selected as an absolute
value to filter out correlated variables as it has been recognized as an acceptable threshold level to
minimize multicollinearity [34] (Figure S1). Some variables under the same cluster were selected due
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to their importance in maize productivity. Thus, a subset of seven variables was selected for model
runs (Table S1). All the bioclimatic variables were converted into Raster ASCII GRIDS (.asc) format
that is acceptable by the MaxENT model and projected to WGS1984_UTM_Zone37N. Finally, spatial
jackknifing tests were performed for the selected variables using the SDMtoolbox to ascertain the
relative contributions of each of the variables to the MaxENT model [35]. As per Phillips et al. [36],
the Jackknifing procedure is one of the in-built functions of MaxENT that operates by excluding each
variable in turn and creating a model with the remaining variables, creating a new model using each
variable in isolation.

2.3. Species Occurrence Data

As per the FAO database, the average land area under maize production in Kenya between
the years 2000 to 2017 was 1,871,147 hectares [37]. The farms where maize is grown were visually
identified by systematically scanning maize growing counties in Google Earth, based on the first
author’s knowledge of maize farms in the country. The maize farms could easily be identified visually
in satellite images based on the distinct growing pattern and coloration of vegetation. Through this
process, 962 occurrence points (Table S2) were extracted from the identified maize farms in various
counties and their coordinates recorded for use in the model. Considering that there are a number of
counties with zero maize production, we selected most occurrence points from farms in the western part
of Kenya, which has diversified agro-ecological zones in order to capture variability. We compared the
geographic coordinates of the locations on the map of Kenya croplands [38] (Figure S2). Considering
that some of the points were close to each other, we used spatial rarefaction in the SDMtoolbox of
ArcGIS (version 10.4.1) at a maximum user distance of 10 km in order to eliminate multiple auto
correlated occurrence locations [35,36,39]. Through this process, the output was a record of 295 farms
that were finally used as training data in the model (Figure 2).
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2.4. Ecological Niche Modelling

In this study, we used Maximum Entropy software (MaxENT version 3.4) [36,40] to analyse
current and future shifts in lands suitable for the cultivation of Zea mays L. in Kenya. Among the
SDMs, we chose MaxENT based on the following reported advantages: (i) it is considered the best
available species distribution and is highly regarded due to its superlative analytical capacity and
precision in predicting distribution of different floral species [14]; (ii) the model performance is good
with presence-only data and small numbers of records, and can utilize both continuous and categorical
variables [23,36]; (iii) it is resistant to spatial errors in occurrence data to some extent and performs
well with occurrences that show sampling bias [41]. The model computes the likely distribution of a
species with the support of maximum entropy rules and statistical mechanisms [36]. The predictors
that the model mainly utilizes are the environmental variables and the species occurrence information.
The idea of MaxENT is to use species presence-only data and a set of environmental predictors across
a defined land scape to compute the probability of target distribution by finding the possibility of
maximum entropy [36]. The MaxENT algorithm builds on subjecting the constraints on an unknown
target probability distribution over a set of known features (denoted as J, which in our case are the
environmental variables or predictors thereof). For each site xi, a non-negative probability denoted as
p is assigned, and the likelihood is assumed to sum to 1. According to Phillips et al. [36], the entropy
estimate of π̂ is defined as:

H ( π̂) = −
∑

x∈X
π̂(x)lnπ̂(x) (1)

where ln is the natural logarithm.
As per Merow et al. [42], the relative occurrence rate (ROR) is predicted by MaxENT as a function

of predictors at a particular location that is defined in the form:

ROR = exp(z(xi)|/
∑

i
exp z(xi)|) (2)

where z is a vector of J environmental variables at location xi, and | denotes a vector of
regression coefficients.

2.5. MaxEnt Settings and Evaluation of Model Accuracy

The model was set to use 80% of the 295 maize presence locations as predictive training samples, and
the remaining 20% for performance testing. The sub-sampling technique of the MaxENT algorithm was
used and the model set to 10 replicates in order to use all the data efficiently and to ensure a more realistic
average output [36]. This also helps to evaluate uncertainty in the model [42]. For model convergence,
the number of maximum iterations was set to 5,000 in order to attain adequate predictions [36].
The number of background points for each analysis was set to 10,000 to represent pseudo-absence
locations which are used by the model to define probability distribution and estimates [43]. Overall
validation of the model was evaluated using the threshold-dependent True Skill Statistics (TSS) and
threshold-independent area under the curve (AUC) of the receiver-operating characteristic (ROC)
which is a plot of sensitivity against specificity [36,44]. According to Allouche et al. [45], TSS takes into
account both the omission and commission errors and success as a result of random guessing and is
presented as:

TSS = Se + Sp− 1 (3)

where Se is the sensitivity and Sp is the specificity. As per Mason and Graham [46], AUC is determined
as follows:

AUC =
1

n1n0

n1∑
i=1

n0∑
j=1

I
(
x1i, x0 j

)
(4)
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where

I
(
x1i , x0 j

)
=


0 i f x1i < x0 j

0.5 i f x1i = x0 j
1 i f x1i > x0 j

(5)

and where x1i is the predicted value for the presence site denoted as n1, and x0 j is the predicted value
for absence site denoted as n0.

2.6. Reclassification and Change Detection

First, the simulated MaxENT outputs that present the possibility of a given geographic area for
maize production was reclassified using the natural breaks (Jenks) classification method in ArcGIS.
The classes of suitability under this study are described in Table 1:

Table 1. Suitability assessment for maize cultivation in Kenya.

Class of Suitability Suitability Cut-Off
Values Description

Highly suitable >0.8 Lands with optimal conditions suitable for maize
cultivation

Suitable 0.6–0.8 Lands with minor climatic limitations for optimal
maize cultivation

Moderately suitable 0.2–0.4 Land with major climatic limitations that may
significantly reduce production of maize

Unsuitable <0.2 Lands with severe climatic limitations that are
not favourable for cultivation of maize

Secondly, change detection was undertaken through an overlay analysis in ENVI (version 5.5)
with the aim of analysing the spatial shifts in land from current to projected suitability under the
various climate scenarios for the year 2070. The nature of the spatial shifts in the land suitability classes
described in Table 1 was identified as follows: (1) expansion due to a gain from the conversion of other
land categories; (2) Improvement due to a shift of a given land class to better suitability conditions;
(3) Reduced suitability due to a conversion to a lower suitable category; (4) Constant/unchanged when
the land areas remain under the same suitability category under the present and future climate.

Figure 3 is a methodological flowchart summarizing the above methodology. Presented are
the inputs, data processing pathways and tools, MaxEnt modelling outputs and final processes of
preparation of outputs and analysis through change detection.
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3. Results

3.1. Climatic Variables Influencing Land Suitability for Maize Cultivation

The climatic factors that affect area suitability for maize production were derived from seven
bioclimatic variables selected from each set of highly correlated predictors (Figure 4). The contribution
of each of these predictors in influencing the geographic suitability for maize cultivation was analysed
in a histogram of the jackknife test, which is one of the outputs of the MaxENT model.
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Figure 4. Results of jackknife test showing potential climatic contributors to suitability for maize
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compared to a uniform distribution. The light blue bars (without variable ) show the gain lost when
the variable is removed from the model, while the dark blue bars (with only one variable) indicate the
gain from using a variable in isolation, and the red bar (with all variables) indicates the gain in using all
variables in the model.



Agronomy 2019, 9, 727 8 of 18

As per the results of the jackknife test (Figure 4), it is important to note that the contribution of
mean temperature of the wettest quarter, the annual rainfall and annual mean temperature are some
of the predictors that present the most useful information in determining suitability of an area for
maize cultivation (Figure 4). The percentage contributions of the bioclimatic predictors are presented
in Table 2. The annual precipitation was the major determinant and contributed 43.1% to the model,
followed by the mean temperature of wettest quarter at 31.2%. The lowest contributor was annual
mean temperature. The accumulated percentage contribution of the seven variables was 99.9%.

Table 2. Contribution of bioclimatic factors that affect maize cultivation in Kenya.

Variable Percentage
Contribution (%)

Cumulative
Contribution (%)

Annual precipitation 43.1 43.1
Mean temperature of the wettest quarter 31.2 74.3

Diurnal mean temperature range 9.5 83.8
Precipitation of the wettest quarter 6.7 90.5

Temperature seasonality 4.2 94.7
Coefficient of precipitation variation 3.4 98.1

Annual mean temperature 1.8 99.9

3.2. Model Performance

In this study, the performance of the MaxENT model was examined based on the receiver operating
characteristic curve (Figure 5) and TSS. The average AUC and TSS values for the 20% of the occurrence
data for the ten replicate runs were 0.93 and 0.71, respectively.
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3.3. Suitability Zones for Maize Production

Habitat suitability maps were created for the current and future regions for maize production and
the coverage in Kenya (Figures 6 and 7). Across the country, the simulation output shows that 70% of
land is unsuitable for maize production under the present and future climate projections. The major
counties that are not suitable are Marsabit, Turkana, Wajir, Garissa, Tana river, Mandera, Isiolo Kitui
Samburu, Taita Taveta, Kilifi, Kajiado, Kwale, Lamu, Baringo, Meru, West Pokot, Makueni, Homa
Bay and Siaya. The moderately suitable areas occupy between 16 and 19.6% of the country (Figure 6).
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The major counties that fall under this category are Nairobi, Machakos, Kiambu, Narok, Laikipia,
Kajiado, Murang’a, Makueni, Nyeri, Vihiga, Embu, Nyandarua. At present, the highly suitable areas
are estimated to occupy approximately 3.6% of the country and are projected to reduce in coverage to
an average of 3.3% under RCP 4.5 and increase to an average of 4% under RCP 8.5. The counties in this
category are Uasin Gishu, Trans Nzoia, Nandi, Nakuru, Baringo, West Pokot, Kericho, Keiyo-marakwet,
Bungoma, Kakamega, Bomet, Kitui, Laikipia, Nyeri.Agronomy 2019, 9, x FOR PEER REVIEW 10 of 19 
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3.4. Change in Suitability for Maize Production

The predicted average conversions of the country’s suitability zones for maize production based
on the two GCMs are presented in Tables 3 and 4. Projections for the future climate indicate that
approximately 95% and 58.5% of the land will remain unsuitable and moderately suitable for maize
production, respectively. Likewise, over 50% of suitable and 68–75% of highly suitable areas will remain
unchanged. In terms of the changes in land suitability, it is projected that the climate will become
unsuitable for the presently cultivated maize cultivars in parts of the currently moderately suitable
lands in parts of Kajiado, Taita Taveta, Laikipia, Samburu, Narok, Kitui, Turkana and Siaya counties.
This change is likely to cause expansion of unsuitable lands by an average of 27,310–31,262 km2.
However, parts of Marsabit, Lamu, Isiolo, Kitui and Meru counties that are currently unsuitable will
shift to a moderately suitable status, by a total of 16,704 km2 under RCP 4.5 and 19,996 km2 under RCP
8.5. Likewise, 608–836 km2 of the unsuitable land will be suitable for maize production.

The moderately suitable zones across Kenya are likely to reduce in coverage by approximately
19,936 km2 (17.5%) and 16,707 km2 (14.6%) under RCP 4.5 and RCP 8.5, respectively. The change in this
category is as a result of predicted conversion to unsuitable zones by a total of 22,398 to 32,223 km2.
In addition, it is anticipated that there will be an improvement in the currently moderately suitable
zones to better suitability by a total of between 16,174 to 19,581 km2 that will majorly result from
conversions in parts of Kajiado, Narok, Kitui, Embu, Machakos, Laikipia, Kwale and Kilifi counties.
The suitable zones will increase by 22,203-24,162 km2 under the projected climate through gains
from deterioration of highly suitable lands and improvement in unsuitable and moderately suitable
lands. It is projected that there be will an improvement in these zones due to conversion to highly
suitable zones by a total of 4146–6397 km2, mostly in parts of Nakuru, Baringo, Bomet, Kericho,
Keiyo-Marakwet and Laikipia counties. The projected change in the highly suitable areas is a decrease
in suitability of 5262–6732 km2 and an expansion of an average of 4,704 km2 under RCP 4.5 and 7296
under RCP 8.5.
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Table 3. Changes in land suitability for maize production under RCP 4.5 in Kenya for 2070 compared
to current suitability.

Class of Suitability

Conversions from Current Climate in km2

(Percentage is Shown in Parentheses) Area under
(RCP 4.5)

Unsuitable Moderately
Suitable Suitable Highly

Suitable

RCP 4.5

Unsuitable 394,554 (95.8%) 31,262 (27.4%) 1931 (5%) 67 (0.3%) 427,814
Moderately Suitable 16,704 (4.1%) 66,653 (58.4%) 10,062 (29%) 676 (3.2%) 94,094

Suitable 608 (0.1%) 15,616 (13.7%) 19,084 (54%) 5,980 (28.3%) 41,288
Highly suitable 558 (0.5%) 4,146 (12%) 14,395 (68.2%) 19,100

Total area (current) 411,865 114,089 35,223 21,118
Average change 15,987 (3.9%) −19,936 (−17.5%) 6,065 (17%) −2,019 (−6%)

Note: The average change represents the change in the class of suitability from the current climate.

Table 4. Changes in land suitability for maize production under RCP 8.5 in Kenya for 2070 compared
to current suitability.

Category
Suitability

Conversions from Current Climate km2

(Percentage is Shown in Parentheses) Area under
(RCP 8.5)

Unsuitable Moderately
Suitable Suitable Highly

suitable

RCP 8.5

Unsuitable 391,033 (94.9%) 27,310 (23.9%) 1370 (4%) 3 (0.0%) 419,716
Moderately Suitable 19,996 (4.9%) 67,198 (58.9%) 9502 (27%) 617 (2.9%) 97,313

Suitable 836 (0.2%) 18,683 (16.4%) 17,954 (51%) 4643 (22.0%) 42,116
Highly suitable 1 (0.0%) 898 (0.8%) 6397 (18%) 15,856 (75.1%) 23,152

Total area (current) 411,865 114,089 35,223 21,118
Average change 7877 (1.9%) −16,707 (−14.6%) 6893 (20%) 2034 (9.6%)

The quantitative changes and maps of various suitability categories under the two IPCC scenarios,
and HadGEM2-ES and CCSM4 GCMs presented in terms of improved suitability, unchanged/constant,
expansion and decrease coverage are shown in Table 5 and Figure 8. Simulated results of areas under
each climate suitability class for current and future maize production in various counties are presented
in the Tables S3–S7).

Table 5. Changes in land suitability categories.

Category of
change

Change type
Area (km2) under RCP 4.5 Area (km2) under RCP 8.5

CCSM4 HadGEM2-ES CCSM4 HadGEM2-ES

Highly suitable
Constant 14,185 (67.2%) 14,606 (69.2%) 15,672 (74.2%) 16,039 (75.9%)
Expand 4279 (20.3%) 5130 (24.3%) 5700 (27.0%) 8892 (42.1%)

Decrease 6,933 (32.8%) 6512 (30.8%) 5446 (25.8%) 5079 (24.1%)

Suitable

Constant 18,513 (52.6%) 19,656 (55.8%) 18,375 (52.2%) 17,532 (49.8%)
Expand 21,112 (59.9%) 23,294 (66.1%) 22,297 (63.3%) 26,027 (73.9%)
Improve 3879 (11.0%) 4413 (12.5%) 5096 (14.5%) 7697 (21.9%)
Decrease 12,831 (36.4%) 11,154 (31.7%) 11,752 (33.4%) 9994 (28.4%)

Moderately
suitable

Constant 68,007(59.6%) 65,299 (57.2%) 64,882 (56.9%) 69,514 (60.9%)
Expand 27,027(23.7%) 27,855 (24.4%) 28,976 (25.4%) 31,254 (27.4%)
Improve 14,562 (12.8%) 17,786 (15.6%) 16,985 (14.9%) 22,178 (19.4%)
Decrease 31,520 (27.6%) 31,004 (27.2%) 32,223 (28.2%) 22,398 (19.6%)

Unsuitable
Constant 396,188 (96.2%) 392,920 (95.4%) 392,854 (95.4%) 389,212 (94.5%)
Expand 32,985 (8.0%) 33,536 (8.1%) 33,540 (8.1%) 23,827 (5.8%)
Improve 15,677 (3.8%) 18,946 (4.6%) 19,012 (4.6%) 22,654 (5.5%)

Note: The percentages in parentheses denote the portion of the change in relation to the current suitability.
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4. Discussion

Geographic suitability of a given species is influenced by climatic variables that play a key role
in the biological processes of the species growth, and this is critical in modelling [15,47]. This study
investigated the current and potential geographic distribution of maize in Kenya for RCP4.5 and
RCP8.5 scenarios using bioclimatic variables from HadGEM2-ES and CCSM4 GCMs. HadGEM2-ES
used in this study was motivated by the findings of a study by Dike et al. [31], who observed that
the model presents annual cycles of temperature and precipitation that are very close to the mean of
CMIP5 models in Africa, thus, suitable for analysis of spatial patterns and future projections over the
continent. The results from CCSM4 showed minor differences with those of HadGEM2-ES, which is
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contrary to the findings of Klein et al. [48], who indicated that the GCM does poorly in reproducing
rainy seasons in East Africa. The minor variations in climatic suitability projections by the two models
could be attributed to local differences in magnitudes of bioclimatic parameters as projected by the
models and the RCPs.

The numbers of climatic variables were reduced from the initial 19 to seven variables (Figure 4)
that have low correlation and are based on climate indices that have been used to examine maize
production in Kenya and other regions in the world, such as the studies of Zhang et al. [6], He and
Zhou [18], Mati [28], Ogutu et al. [49], Olson et al. [50]. The use of elevation was not considered since it
is a proxy variable that could result in autocorrelations with temperature and rainfall data; bioclimatic
variables are strong enough to determine the spatial limits of climatic tolerance of species [51,52].

In terms of model performance, the simulated results indicated that the average area under the
curve (AUC) of the MaxENT model was 0.938, indicating good predictive accuracy [53–55]. The AUC
value, which is closer to one, is indicative of minimum omission and commission errors of the model.
The TSS value of the study was 0.71, which falls under the category of 0.4–0.8 that is considered as
moderate performance [56] but towards the upper end. The Cohen’s kappa statistic, which is also used
to measure model performance, was not used due to its dependency on prevalence [45]. In addition,
the model jackknife test provided a measure on the contribution of the various environmental variables
in influencing the suitability for maize production. The performance of the MaxEnt model confirmed
its appropriateness for predicting climate suitability for maize production. This is in agreement with
the findings of related studies that found the model is applicable in assessing crop suitability. Examples
are studies on rice by Duan and Zhou [20] and Liu et al. [21]; maize by Machovina and Feeley [57],
Ji et al. [58] and He and Zhou [18]; and banana by Machovina and Feeley [57]. This then confirms
MaxENT’s capacity, which is based on machine learning and the principle of maximum entropy in
estimating the multivariate distribution of habitat suitability conditions for crop suitability.

The results revealed that the annual temperature, mean annual precipitation and the mean
temperature of the wettest quarter were the major factors influencing suitability for maize cultivation
(Table 2). As for these contributors, it is worth understanding that the temperature governs maize
suitability since it is a thermophilic C4 crop. For instance, temperature affects germination, growth and
development of the crop. Similarly, annual precipitation plays a key role in water balances for growth
and production of the crop [18,59,60].

Generally, different regions assume certain levels of suitability based on the changes in
environmental parameters [61]. Therefore, any deviation of these parameters causes an improvement,
an increase or decrease in the state of suitability for cultivation of a crop. In Kenya, maize usually does
well in wetter areas than in drier regions because the most limiting factors are rainfall amount and
distribution [28]. In addition, an increase in the suitability of high altitude areas for maize production
will be directly related to an increase in temperature, but at lower elevations, the influential factor
would be water balances [60].

Based on the climatic factors and the results of the MaxENT model, the geographic suitability
of the climate for maize production in the country can be divided into highly suitable, suitable,
moderately suitable and unsuitable areas, which at the present, almost match the distribution of
maize cultivation in Kenya. For the current distribution, our simulation shows that the unsuitable
areas occupy approximately 70.7% of the country and mainly cover the arid and semi-arid areas.
The moderately suitable area covers approximately 19.6%, suitable being 6% and highly suitable areas
being 3.6% (Table 3). These results are assumed to be acceptable due to the good performance of
the model and the agreement of the findings with the present maize farming areas that fall under
agro-climatic zones II, III and IV with rainfall of between 750 mm to 2200 mm per annum [28].

Due to impacts of climate change, the predicted future suitability of lands in Kenya is likely
to result in some areas remaining constant, others expanding, improving or deteriorating in their
suitability (Figure 7). From the findings, the extent of the unsuitable areas will increase by 2–4%,
the moderately suitable areas are likely to decrease by 15–17% and the suitable areas likely to increase
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by 17–20% depending on the climate scenario. Likewise, the highly suitable areas are likely to decrease
by 9.6% under RCP 4.5 or increase by approximately the same amount under RCP 8.5 (Table 4).

In terms of conversions in land suitability classes (Table 5), the simulation results show a higher
likelihood of moderately suitable zones converting to unsuitable zones (27.4% under RCP 4.5 and 23.9%
under RCP 8.5). Likewise, there is a potential shift of suitable lands of between 27–29% to moderately
suitable lands. These conversions demonstrate a greater decrease in suitable areas compared to those
that improve in suitability under both scenarios. As such, these findings seem to provide a more
consistent picture, similar to the findings of Mati [28], who predicted a potential decrease of maize
yields in zone III and an increase in zone IV agro-ecological zones of Kenya. Similarly, the findings
strongly confirm the observations of the Fifth Assessment Report of the IPCC on the potential changes
in agro-climatic zones [3]. For instance, the report predicts a possibility of shifts in agro-climatic zones
that are currently good for crop production to more suitable and those that are currently marginally
suitable becoming unsuitable [3].

The changes in suitability of lands for maize production in Kenya present an opportunity for the
establishment of mitigation and adaptation measures required to sustain maize production under
future climate. For instance, the government should consider taking advantage of the counties that are
likely to experience potential expansion or improved suitability and explore their possibilities for future
maize production. For the suitable and highly suitable areas that are likely to remain stable, it would be
necessary to continue supporting and improving techniques for optimum maize production. However,
in areas where there is potential decrease in suitability for maize production, there will be need to
explore adaptation options such as potential alternative crops or shifts in diets in order to offset food
shortages [62]. Other possibilities to counteract the negative impacts of climate change would be the
use of irrigation and maize varieties with greater tolerance to local abiotic stresses and resistance to
pests and diseases that may result from climate change [61,63].

Like most modelling studies on the effects of climate change on crop production, this study comes
with some limitations. For example, there are substantial uncertainties in data on maize locations
across the climate suitability classes and thus a constraint to notably examine the actual impacts on
maize cultivation. Secondly, visual selection of occurrence location points may cause substantial bias
in sample selection. In addition, we have not taken into consideration the influence of edaphic factors
that affect the land on which particular crops grow, such as maize in this case. Soil is a medium in
which the plant grows and supplies moisture and nutrients required for development and climate
change is projected to significantly affect its processes and composition [6]. However, information on
the contribution of soil to suitability of lands for crop production under a future climate has not been
developed for Kenya. Other limitations include the influence of non-climatic factors such as changes
in land uses, which could be considered in future research to further improve the results. We have also
used a one niche modelling method (MaxENT) whose results may be different from those of other
models. However, other studies that have compared the performance of niche models have concluded
that MaxENT was the best among the models in predicting distribution of species, albeit with some
limitations [23,64,65]. Lastly is the limitation associated with the use of GCMs, which mainly involve
uncertainty from model bias related to structure and climate sensitivity of the model [3]. Despite the
GCMs giving reasonably consistent results, we caution that a wider ensemble may result in quite
different shifts, and this should be taken into consideration in policy-making.

5. Conclusions

This study investigates the potential impact of climate change on present and future geographic
suitability and shifts of maize production lands in Kenya using an ecological niche model (MaxENT).
The outputs indicate that approximately 13–17% of lands are likely to be more suitable for maize
production in parts of Kajiado, Narok, Kitui, Embu, Machakos, Laikipia, Kwale and Kilifi counties.
The highly suitable areas are likely to increase in parts of Nakuru, Baringo, Bomet, Kericho,
Keiyo-Marakwet and Laikipia counties by a total of 4146–6396 km2. The areas that are currently highly
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suitable for maize production show a likelihood of minimal changes under RCP 8.5 compared to
RCP 4.5. The results of this study will enable the policy makers to understand the likely spatial shifts
of future maize cultivation and form a basis for the development of adequate strategies on adaptation
with respect to the impact of climate change.

The results of this study are based in part on the assumption that the potential total area with
suitable climatic conditions for maize production also includes other land uses. In line with this,
the implications of land use changes and their effects on the present and future coverage of potential
lands for maize production remain unknown. In light of our findings, it is our recommendation that
further analysis is needed to identify land use changes and determine the effective area of suitable
lands that can be targeted for rainfed maize cultivation in order to ensure sustainable production and
mitigate food insecurity.
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