Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/29881
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTehrany, Mahyat Shafapouren
dc.contributor.authorKumar, Laliten
dc.contributor.authorJebur, Mustafa Neamahen
dc.contributor.authorShabani, Farzinen
dc.date.accessioned2020-12-22T01:02:43Z-
dc.date.available2020-12-22T01:02:43Z-
dc.date.issued2019-
dc.identifier.citationGeomatics, Natural Hazards and Risk, 10(1), p. 79-101en
dc.identifier.issn1947-5713en
dc.identifier.issn1947-5705en
dc.identifier.urihttps://hdl.handle.net/1959.11/29881-
dc.description.abstractStatistical methods are the most popular techniques to model and map flood-prone areas. Although a wide range of statistical methods have been used, application of the statistical index (Wi) method has not been examined in flood susceptibility mapping. The aim of this research was to assess the efficiency of the Wi method and compare its outcomes with the results of frequency ratio (FR) and logistic regression (LR) methods. Thirteen factors, namely, altitude, slope, aspect, curvature, geology, soil, landuse/cover (LULC), topographic wetness index (TWI), stream power index (SPI), terrain roughness index (TRI), sediment transport index (STI), and distance from rivers and roads, were utilized. A flood inventory was constructed from data captured from the destructive flood that occurred in Brisbane, Australia, in 2011. Model performances were compared using the area under the curve (AUC), Kappa index and five other statistical evaluation tools. The AUC prediction rates acquired for LR, Wi and FR were 79.45%, 78.18%, and 67.33%, respectively. A more realistic representation of the flood-prone area distribution was produced by the Wi method compared to those of the other two techniques. Our research shows that the Wi method can be used as an efficient approach to perform flood susceptibility analysis.en
dc.languageenen
dc.publisherTaylor & Francisen
dc.relation.ispartofGeomatics, Natural Hazards and Risken
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEvaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methodsen
dc.typeJournal Articleen
dc.identifier.doi10.1080/19475705.2018.1506509en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameMahyat Shafapouren
local.contributor.firstnameLaliten
local.contributor.firstnameMustafa Neamahen
local.contributor.firstnameFarzinen
local.subject.for2008050204 Environmental Impact Assessmenten
local.subject.for2008050102 Ecosystem Functionen
local.subject.seo2008960913 Water Allocation and Quantificationen
local.subject.seo2008960501 Ecosystem Assessment and Management at Regional or Larger Scalesen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emaillkumar@une.edu.auen
local.profile.emailfshaban2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited KIngdomen
local.format.startpage79en
local.format.endpage101en
local.peerreviewedYesen
local.identifier.volume10en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnameTehranyen
local.contributor.lastnameKumaren
local.contributor.lastnameJeburen
local.contributor.lastnameShabanien
dc.identifier.staffune-id:lkumaren
dc.identifier.staffune-id:fshaban2en
local.profile.orcid0000-0002-9205-756Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/29881en
local.date.onlineversion2018-12-25-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEvaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methodsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorTehrany, Mahyat Shafapouren
local.search.authorKumar, Laliten
local.search.authorJebur, Mustafa Neamahen
local.search.authorShabani, Farzinen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/5f38f845-3458-4286-85d8-c0b3dd9345f7en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000454484700001en
local.year.available2018en
local.year.published2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/5f38f845-3458-4286-85d8-c0b3dd9345f7en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/5f38f845-3458-4286-85d8-c0b3dd9345f7en
local.subject.for2020410402 Environmental assessment and monitoringen
local.subject.for2020410203 Ecosystem functionen
local.subject.seo2020180305 Ground water quantification, allocation and impact of depletionen
local.subject.seo2020190211 Water policy (incl. water allocation)en
local.subject.seo2020180403 Assessment and management of Antarctic and Southern Ocean ecosystemsen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/EvaluatingKumarShapani2018JournalArticle.pdfPublished version2.81 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

149
checked on Dec 14, 2024

Page view(s)

1,366
checked on Jun 23, 2024

Download(s)

136
checked on Jun 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons