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ABSTRACT
Statistical methods are the most popular techniques to model
and map flood-prone areas. Although a wide range of statistical
methods have been used, application of the statistical index (Wi)
method has not been examined in flood susceptibility mapping.
The aim of this research was to assess the efficiency of the Wi
method and compare its outcomes with the results of frequency
ratio (FR) and logistic regression (LR) methods. Thirteen factors,
namely, altitude, slope, aspect, curvature, geology, soil, landuse/
cover (LULC), topographic wetness index (TWI), stream power
index (SPI), terrain roughness index (TRI), sediment transport
index (STI), and distance from rivers and roads, were utilized. A
flood inventory was constructed from data captured from the
destructive flood that occurred in Brisbane, Australia, in 2011.
Model performances were compared using the area under the
curve (AUC), Kappa index and five other statistical evaluation
tools. The AUC prediction rates acquired for LR, Wi and FR were
79.45%, 78.18%, and 67.33%, respectively. A more realistic repre-
sentation of the flood-prone area distribution was produced by
the Wi method compared to those of the other two techniques.
Our research shows that the Wi method can be used as an effi-
cient approach to perform flood susceptibility analysis.

ARTICLE HISTORY
Received 10 January 2018
Accepted 26 July 2018

KEYWORDS
Flood; statistical index;
logistic regression;
frequency ratio; GIS

1. Introduction

Floods are the most prevalent natural disasters worldwide (Khosravi et al. 2016;
G�omez-Palacios et al. 2017). This phenomenon is defined as a heavy rainfall that
causes rivers to overflow and temporarily cover the neighbouring regions (Merz et al.
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2007). Landuse/cover (LULC) and climate change are the two main causes of
increases in flood occurrences (Bronstert 2003; Dang and Kumar 2017; Kjeldsen
2010). Climate change has altered the current precipitation pattern, which creates
heavy rainfalls in a very short period, quickly forming floods as the extent of rainfall
exceeds the permeability capability of the soil. Evidence-based management is
required to minimize both biodiversity loss and impacts on human populations and
infrastructure from natural disasters (Cinderby and Forrester 2016). If land use and
land management practices have the potential to increase flooding, it follows that
these also have the potential to mitigate this risk through reduced runoff generation
and altered land management (Juarez-Lucas et al. 2016; Shabani et al. 2014). This will
require spatially explicit and catchment-scale flood models to test landscape change
and rainfall runoff scenarios to reduce the impacts from flooding natural disasters
and maintain healthy socio-ecological systems under changing catchment and climate
conditions (Tehrany et al. 2015b). Remote sensing and GIS technologies, together
with the latest modelling techniques, can contribute to our ability to predict and
manage floods (Forte et al. 2006; Pradhan 2010). The existing uncontrolled negative
influences of flooding on river coastal socio-ecological communities can be reduced
by appropriate preventative actions (Novelo-Casanova and Rodr�ıguez-Vangort 2016).

Flood-prone area mapping has been implemented using various methods in numer-
ous studies. Some of the most popular methods can be categorized into four main groups
of hydrological-based (Liu and De Smedt 2004; Jayakrishnan et al. 2005), quantitative
(Pradhan and Youssef 2011; Tehrany et al. 2014b; Rahmati et al. 2016), qualitative (Chen
et al. 2011; Stefanidis and Stathis 2013) and machine learning (Liong and Sivapragasam
2002; Tehrany et al. 2015a) techniques. Among different groups of flood models pre-
sented in the literature, artificial neural networks (ANNs), frequency ratio (FR), logistic
regression (LR), decision trees (DT), and support vector machines (SVMs) are the most
popular techniques that have been utilized in flood domain mapping (Tehrany et al.
2015b; Mojaddadi et al. 2017). Although flood susceptibility mapping models are avail-
able, the reliability of flood prediction maps still remains a critical issue. Each method
has different capabilities and can be affected by different sources of uncertainties
(Shrestha and Nestmann 2009). Hence, a full understanding of the strength of each
model and its uncertainties help us to make a proper choice for each application.

2. Previous studies

Hydrological methods are simple and are based on a nonlinear concept; therefore,
they are less effective to model complex features such as the catchments (Sahoo et al.
2009). Traditional flood models have been gradually improved or replaced by rule-
based and automated techniques that are more suitable for hazard analyses (Hostache
et al. 2013). Some hydrological models, such as SWAT (Anjum et al. 2016) and
WetSpa (Nurmohamed et al. 2012) integrate RS and GIS to enhance the accuracy of
spatial analysis. However, more robust and precise methods are required to overcome
the disadvantages of the traditional hydrological methods. Qualitative methods, such
as an analytic hierarchy process (AHP), assesses the flood susceptibility using a multi-
criteria analysis framework (Karimi et al. 2018). The AHP method has been used by
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Dahri and Abida (2017) to map the flood-prone areas on the Kassandra Peninsula in
northern Greece. These kind of methods require the knowledge of specialists in that
specific field. Hence, they cannot be used as reliable techniques due to the involve-
ment of the expert’s opinion in their analysis (Rahmati et al. 2016).

Machine learning techniques, such as ANN (Maier and Dandy 2000), SVM
(Tehrany et al. 2015b), and DT (Sun et al. 2011), are widely used in flood analysis.
However, a considerable processing time, the requirement of having high perform-
ance computing systems along with specific software, and strict selection criteria for
input parameters make machine learning methods less usable for a wide range of
users (Ghalkhani et al. 2013; Tehrany et al. 2013). SVM, as one of the robust machine
learning techniques, has been used by Tehrany et al. (2015b) and Mojaddadi et al.
(2017) to map the flood-susceptible areas in various cases of study. The experience
required to select a proper SVM kernel, setting the criteria using trial and error, and
the complexity of the process make these methods less usable in flood modelling
compared to the statistical techniques. Another example is related to the DT tech-
nique that provides the tree structure of conditioning factors with corresponding
probability weights (Tehrany et al. 2013). There are different forms of decision trees
available, such as Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT),
NaïveBayes Trees (NBT), and Alternating Decision Trees (ADT) (Khosravi et al.
2018), that can be used in the spatial modelling. However, similar to SVM, the variety
of DT algorithm choices and the requirement for a statistical expert can be consid-
ered some of the disadvantages of this technique.

Poor predictions due to the dataset size and dissimilar value ranges of the valid-
ation and training datasets are the weak points of ANN (Bui et al. 2016). Due to the
weak points of ANN, a neural fuzzy method has been proposed and utilized in sev-
eral natural hazard applications (Chang and Tsai 2016; G€uçl€u and Şen 2016).
However, the neural fuzzy method has its own restrictions such as its inability to dis-
cover optimal weight variables that considerably effect the prediction performance of
the model, a slow training speed and a high sensitivity to noise in hydrological mod-
elling (Hong and White 2009). Some hybrid methods, such as the adaptive-network-
based fuzzy inference system (ANFIS) and genetic algorithm-based artificial neural
network (ANN-GA), have also been applied in flood studies (Chen et al. 2006;
Fathzadeh et al. 2017). However, they entail many parameters that restrict their use
and reduce their popularity due to data collection difficulties. Moreover, they have
long computation times and extra modelling parameters are needed (Dawson
et al. 2006).

Deterministic and statistical are two types of quantitative methods. The require-
ment of having an extensive dataset makes deterministic methods more useful for
mapping small regions (Ayalew and Yamagishi 2005). Statistical methods, on the
other hand, can be understood with ease within a reasonable period of time (Liao
and Carin 2009). As it has been stated by Chau et al. (2005), it is imperative to utilize
a quick, understandable, and accurate method for flood modelling. Statistical methods
have no specific requirement regarding the input data, software, computer capacity,
etc. They can be either bivariate statistical analysis (BSA) (Chen et al. 2018b), multi-
variate statistical analysis (MSA) (Ayalew and Yamagishi 2005), or a combination of
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both. BSA evaluates the impact of each class of every conditioning factor on flood occur-
rence. In contrast, MSA assesses the influence of each factor on flooding, without consid-
ering the impact of each class. FR (Khosravi, et al. 2016; Youssef et al. 2016), Weight of
Evidence (WoE) (Tehrany et al. 2014b) and Evidential Belief Functions (EBFs) are a few
examples of BSA methods. Both WoE and EBF are based on the Dempster–Shafer theory
that was first introduced by Shafer (1976). One of the advantages of Dempster–Shafer-
based methods is their capability to handle an incomplete dataset. Moreover, they pro-
duce predictive flood mapping zones and the degree of uncertainty of the same zone.
However, they have a few disadvantages. To use the model, first, the flood conditioning
factors should be transformed into evidential data layers (using specific calculations) that
can be integrated (by the Dempster–Shafer rule of combination) to generate a predictive
flood susceptibility map. This requires several calculation steps and data transformations.
In addition, the output result of the Dempster–Shafer parameters (belief, disbelief, uncer-
tainty (doubt), and plausibility) have to be defined as accurately as possible in order to
achieve a reasonable final map (Dempster 2008). While these methods are highly useful
in some environmental applications, they are less preferable in flood modelling due to
the importance of time for data processing.

FR has been utilized by Lee et al. (2012) to map the flood-prone regions in Korea.
They stated that the FR method can be quickly and easily applied to areas with little
map data, and at low cost. LR is one of the most popular MSA techniques for a var-
iety of applications such as landslides (Chen et al. 2017), floods (Tehrany et al. 2017),
land subsidence (Kim et al. 2006), earthquakes (Umar et al. 2014), mineral mapping
(Xiong and Zuo 2018), and ground water mapping (Chen et al. 2018a). Unlike most
of the statistical methods, LR does not require any pre-analysis assumptions.
Additionally, it accepts all data types such as scale, nominal, and categorical. Both FR
(Khosravi et al. 2016; Youssef et al. 2016) and LR (Pradhan 2010) have been used in
several flood studies; however, the application of the Statistical Index (Wi) has not
been tested in this domain. The Wi method is a BSA technique that has been fre-
quently and successfully used in landslide analysis (Yalcin 2008; Bui et al. 2011); how-
ever, its application has not been evaluated in other natural hazard studies such as
floods, forest fires, groundwater, and soil erosion susceptibility mapping. Hence, the
aim of this paper is to apply and examine the proficiency of Wi in flood-prone area
mapping. There is no question that natural hazard studies, such as those on flood
phenomena, require time and effort in order to provide a better understanding of the
flooding problem, and any improvement, no matter how small, will have a consider-
able impact on the lives of people and on biodiversity.

3. Study area

In January 2011, continuous extensive precipitation in the Brisbane Catchment,
Australia reduced the infiltration time around the rivers and caused destructive flood-
ing. A lack of proper prevention actions, unorganized need for flood management,
deforestation, and urban expansion are the main reasons for an increase in flooding
in this region (Bohensky and Leitch 2014). An estimated 200,000 people were affected
throughout Queensland during this period, causing damage of an estimated AUD $1
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billion (http://www.bom.gov.au/qld/flood/fld_history/brisbane_history.shtml). Most of
the area around the Brisbane River flooded, and considerable destruction and loss of
life occurred. The Queensland Government undertook a survey regarding the reasons
for Brisbane’s 2011 flood and other flood events in the state (QFCI 2012) and the
flooding resulted in Australia’s largest class actions to date.

The study areas selected are between 27�23050.27200S and 27�45025.07800S latitude
and 152�46017.73800E and 153�11025.50400E longitude (Figure 1). During the summer,
average temperatures range from 21 to 29.8 �C and the city experiences its highest
rainfall, which can bring thunderstorms and occasional floods. The average rainfall
during this time is 426.6mm. This area receives approximately 1168mm of precipita-
tion annually. The minimum amount of precipitation occurs in September (34mm).
February receives the highest amount of rainfall, with an average of 167mm (http://
en.climate-data.org/).

4. Methodology

The methodology for the current research consists of splitting the flood inventory
into training and testing datasets; selecting the appropriate flood-conditioning factors;
and undertaking three statistical techniques of FR, LR, and Wi for flood susceptibility
and their validations and comparisons.

4.1. Data used

4.1.1. Flood inventory mapping
A flood inventory map is required in order to recognize the correlation among flood
conditioning factors and flood incidences (Pradhan et al. 2016; Tehrany and Jones
2017). To produce susceptibility maps, having an accurate and precise record of the

Figure 1. The Brisbane catchment area used in this study, showing the altitude well as training
and test point locations.
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past flood events is essential (Merz et al. 2007). Documents regarding the flood event
that took place in January 2011 were the main source of the flood inventory used in
this research. These data are usually divided into two categories, training, and testing,
in order to train the model and validate the outcomes, respectively. Following previ-
ous flood modelling studies (Lee et al. 2012; Tehrany et al. 2013; Khosravi et al.
2016), the flood inventory data were randomly grouped into 70% for training and
30% for testing. The locations and distributions of the flood points can be seen in
Figure 1.

4.1.2. Flood conditioning factors
The selection of the flood causative factors, known as conditioning factors, is the
most influential stage in developing the final flood susceptibility maps and has the
highest impact on the precision of the output maps (Kia et al. 2012). Although a
lack of a framework or an agreement on how to select the flood conditioning fac-
tors still remains, the most relevant and repeatedly used flood conditioning factors
by other researchers (Lee et al. 2012; Tehrany et al. 2014a; Rahmati et al. 2016)
were used in this study. A flood conditioning factors dataset was constructed using
altitude, slope, aspect, curvature, geology, soil, landuse/cover (LULC), topographic
wetness index (TWI), stream power index (SPI), terrain roughness index (TRI),
sediment transport index (STI), and distance from rivers and roads (Figure 2). A
DEM with a 5-meter spatial resolution produced from Light Detection and Ranging
(LiDAR) data was used to derive other related topographical and hydrological
parameters. ArcGIS (10.2) and SAGA GIS (2.2) software were used to produce the
aforementioned conditioning factors. All factors were created in raster format with
a 5 m� 5 m pixel size. LR supports all kinds of data types (categorical, scale, nom-
inal, etc.); however, all input factors should be categorized for FR and Wi analysis.
The reason for this categorization is that BSA methods, such as FR and Wi, evaluate
the impact of each class of every conditioning factor on flood occurrence. Hence, a
popular quantile classification method was used to classify scaled factors (altitude,
slope, TWI, SPI, TRI, STI, and distance from roads and rivers) into 10 equal classes
(Ayalew et al. 2004; Shabani et al. 2018; Tehrany, Shabani, et al. 2017; Tehrany et
al. 2017).

Topographical factors of slope, aspect, and curvature were derived from the DEM.
Altitude and slope are two factors that have a considerable impact on flood creation
(Pradhan 2009). Floods are generated in the low-lying and flat regions, and it is not
possible to have flooding at the peak of mountains (Tehrany et al. 2013). Steep slopes
increase the speed of the surface run-off and reduce the time available for the soil to
absorb the water. In the case of the aspect factor, this parameter has an impact on
the received rainfall and sunshine amount of the terrain (Jebur et al. 2014).
Curvature has three classes, flat, convex, and concave, and is another influential par-
ameter in flood studies (Lee and Pradhan 2006). SAGA GIS software was used to
generate SPI, TWI, STI, and TRI from the DEM according to the following equations
(Jaafari et al. 2014; Jebur et al. 2014):

TWI ¼ ln As=tanbð Þ (1)
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Figure 2. Flood conditioning factors; (a) altitude, (b) slope, (c) aspect, (d) curvature, (e) geology,
(f) soil, (g) LULC, (h) TWI, (i) SPI, (j) TRI, (k) STI, (l) distance from rivers and (m) distance from roads.
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Figure 2. Continued.
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SPI ¼ Astanb (2)

STI ¼ AS

22:13

� �0:6
sinb
0:0896

� �1:3

(3)

where As is the area of the catchment (m2) and b (radians) is the slope gradient.
TWI is used to measure topographic control of hydrological procedures (Chen and
Yu 2011) and greater TWI values are usually found in flooded areas. SPI represents
the erosion power of the stream in the catchment (De Risi 2013). STI defines the
movements of the sediments due to the water movement. TRI is one of the morpho-
logical factors associated with flooding (Werner et al. 2005). This parameter can be
calculated using the following equation:

TRI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Abs max2�min2ð Þ

p
(4)

where max and min are the largest and smallest values of the cells in the 3� 3 rect-
angular neighbourhoods of altitude, respectively. Soil (1:250,000 scale) and geology
(1:100,000 scale) data were obtained from the CSIRO and Australian government
websites. The study area is covered by different types of soil formations, such as clay
and sandstone. Geology is another important flood conditioning factor because it has
a considerable impact on the variation in hydrology and sediment production in the
catchment (Khosravi et al. 2016). Terrain infiltration, runoff speed, and extent are
highly affected by the LULC factor (Kassa 2014). A detailed LULC map was received
from the Queensland Land Use Mapping Program (QLUMP) and was produced by
the Queensland Government. This map was created by classifying SPOT5 imagery,
high spatial resolution orthophotography and scanned aerial photos and using local
expert knowledge.

4.2. Flood susceptibility map produced by frequency ratio (FR)

FR is one of the most cited BSA methods in natural hazard studies, such as flood
mapping (Jothibasu and Anbazhagan 2016), landslide mapping (Li et al. 2016),
ground water mapping (Manap et al. 2014), mineral potential mapping (Yusoff
et al. 2015), and soil erosion mapping (Khosrokhani and Pradhan 2014). Its popu-
larity is related to its simple and rapid calculation process (Lee et al. 2012).
Equation (5) shows the calculation of FR for a single conditioning factor, and the
flood probability index can be measured by summing the FR of all of the factors
(Equation (6)).

FR ¼
Npix SXið ÞPm

i¼1
SXi

� �
Npix Xjð ÞPn
j¼1NpixðXjÞ

 ! (5)
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FPI ¼
Xn
j¼1

FR (6)

where the number of flooded pixels in class i of the factor X is represented by
Npix SXið Þ; the total number of pixels within factor Xj is represented by Npix Xjð Þ; m is
the number of classes in factor Xi; and n is the number of factors in the study area
(Regmi et al. 2014).

Microsoft Excel was used to calculate FR for each flood conditioning factor and
each factor was reclassified using the derived FR values in ArcGIS 10.2 using a spatial
analyst tool. The reclassified factors were added using the raster calculator to produce
the flood probability index.

4.3. Flood susceptibility map produced by statistical index (Wi)

Among all the BSA methods, Wi is one of the least used methods in natural hazards
modelling and has not been tested in flood susceptibility mapping. The procedure for
this method is fast and reasonably simple, which makes it suitable for natural hazard
modelling (Aghdam et al. 2016). Wi weights can be described as the natural loga-
rithm of the flood existence in each class of a conditioning factor divided by the total
flood density in the study area (Bourenane et al. 2015). The following equation is
used to calculate Wi weights for each factor (Chen et al. 2016):

Wij ¼ In
Dij

D

� �
¼ In

Nij

Sij

,
N
S

0
@

1
A

2
4

3
5 (7)

where the weight received for class i of the conditioning factor j is given by Wij; the
flood density in class i of the conditioning factor j is given by Dij; the total flood
density within the study area is given by D; the number of pixels with flooding in
class i of the conditioning factor j is given by Nij; the total number of pixels in class i
of the conditioning factor jis given by Sij; N and S are the total number of floods and
total number of pixels in the whole study area, respectively.

After deriving the Wi weights for each flood conditioning factor, each factor was
reclassified using the derived Wi values in ArcGIS 10.2 using the Spatial Analyst tool.
The reclassified factors were added using the raster calculator to produce the flood
probability index.

4.4. Flood susceptibility map produced by logistic regression (LR)

LR is an MSA technique that has been frequently used in a wide range of natural
hazards analysis (Kang and Zhang 2016; Nandi et al. 2016; Zhang et al. 2016).
Defining the specific assumptions are necessary for most of the statistical methods;
however, LR does not require any pre-analysis assumptions (Ayalew and Yamagishi
2005). Moreover, all types of conditioning factors (continuous, nominal, categorical,
etc.) are supported by LR analysis (Lee 2005). LR evaluates a dependent variable of
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the specific event (flood) and recognizes the correlation between that event and more
than one independent variable (conditioning factor) that may influence the probabil-
ity of the event. Through LR binary analysis, a regression association among the flood
inventory and flood conditioning factors will be undertaken (Mathew et al. 2009).
Meaning that, the flood inventory is a binary factor representing the existence and
non-existence of the flooding. The flood probability index, which is represented on a
S-shaped curve in the range of [0, 1], is the output of this technique. Using the
resultant weights (logistic coefficients), the flood probability index (p) was measured
as follows (Bai et al. 2012):

P ¼ 1
1þ e�zð Þ; (8)

where Z is a linear combination, thus LR involves fitting an equation of the following
form to the data:

z ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ bnxn; (9)

where the intercept of the method is represented by the constant b0, bn ðn ¼
0; 1; 2; :::; nÞ represents the LR weights, and xn ðn ¼ 0; 1; 2; :::; nÞ shows the
flood conditioning factors, including slope, aspect, and distance from roads. In the
current research, all conditioning factors and the flood inventory map were trans-
formed from raster to ASCII format and transferred to SPSS to perform LR analyses.

4.5. Accuracy assessment

Accuracy assessment is an essential step in every modelling (Bui et al. 2011). In this study,
the area under the curve (AUC) method was used to evaluate the efficiency and reliability
of the derived three flood probability maps from the FR, Wi, and LR methods. AUC is
widely used in natural hazard studies due to its comprehensive, reasonable, and visually
understandable method of validation (Yilmaz 2009; Nefeslioglu et al. 2010). It begins with
arranging the flood probability index in descending order. Then, the arranged flood prob-
ability index is classified into 100 categories on the y-axis, with cumulative 1% breaks on
the x-axis. It continues with overlaying the flood inventory on the flood probability index.
The presence of the flood points (training and testing) in each class is evaluated, and pre-
diction and success rates are derived (Pourghasemi et al. 2012). Success and prediction
rates are two products of the AUC technique. The flood training and testing datasets were
used to produce success and prediction rates, respectively. AUC produces a range from
zero to one. The method is 100% successful if the AUC value is equal to 1. Hence, the
closer the AUC value is to one, the more accurate the technique.

The statistical evaluation measures of overall accuracy, specificity, sensitivity, posi-
tive predictive value (PPV), and negative predictive value (NPV) were applied to
measure comparative performance of our models (Tien Bui et al. 2016). Overall
accuracy, sensitivity, and specificity measure the proportion of training and testing,
flooded, and non-flooded samples, respectively, that are correctly classified. PPV and
NPV estimate the probability of training and testing dataset samples correctly classi-
fied to the flooded class and non-flooded class, respectively.
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Overall accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

; (10)

Specificity ¼ TN
FPþ TN

; (11)

Sensivity ¼ TP
TP þ FN

; (12)

PPV ¼ TP
FP þ TP

; (13)

NPV ¼ TN
FN þ TN

; (14)

where True Positive (TP) and True Negative (TN) are the number of samples in the
training and validation datasets, correctly classified to the flood and non-flood class,
respectively. False Positive (FP) and False Negative (FN) are the number of samples
in the training and validation datasets that were erroneously classified.

5. Results and discussion

5.1. FR outcomes

FR was measured for each class of every flood conditioning factor by dividing the
flood occurrence ratio by the area ratio. The derived FR result for each factor is given
in Table 1. A greater FR weight shows a stronger association among that class and
flood occurrence, and subsequently represents a higher probability of flood occur-
rence in that class. For instance, the results showed that the first four classes of alti-
tude received the highest FR values. This confirms the concept that flooding mostly
occurs in the low-elevated regions. The class ‘0-0.47�’ in the slope map gained the
highest FR value of 269.88 among the various classes of slope. Another example is
related to the distance from rivers; the closer the distance to the river, the higher the
FR weight. The FR-derived flood susceptibility map (Figure 3(a)) was produced by
classifying the flood probability index achieved from FR analysis. The flood probabil-
ity index was categorized into five susceptible zones of very low, low, moderate, high,
and very high using the quantile method. The class ‘very high’ covered 9.92% of the
study area. The flood-susceptible area distribution in the flood susceptibility map is
9.94% of the area under ‘high’, and 19.93%, 19.98%, and 40.2% of the study area it
occupies is ‘moderate’, ‘low’, and ‘very low’, respectively.

5.2. Wi outcomes

Wi weights for each flood conditioning factor were calculated in Microsoft Excel and
ArcGIS 10.2 and are listed in Table 1. The greater the Wi weight for each class of
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Table 1. The measured FR, Wi and LR for conditioning factor.
Layer Classes Cells Deposit FR Wi LR

Altitude (meters) 0.75–7.87 93,047 30,419 486.36 158.18 0.5907
7.87–16.49 109,346 31,455 427.96 145.39
16.49–23.68 104,146 5242 74.88 �28.93
23.68–30.87 99,440 410 6.13 �279.13
30.87–38.06 101,823 1 0.01 �883.12
38.06–45.24 99,110 0 0.00 0.00
45.24–53.87 107,992 0 0.00 0.00
53.87–63.93 99,912 0 0.00 0.00
63.93–79.75 97,263 0 0.00 0.00
79.75–365.84 92,526 0 0.00 0.00

Slope (Degree) 0–0.47 88,540 16,062 269.88 99.28 1.5919
0.47–1.17 103,408 11,276 162.23 48.38
1.175–1.88 108,438 7819 107.27 7.02
1.88–2.58 117,498 6001 75.98 �27.47
2.58–3.29 112,639 4748 62.71 �46.66
3.29–4.23 119,216 4669 58.26 �54.02
4.23–5.40 102,531 4180 60.65 �50.00
5.40 - 7.05 86,124 3914 67.61 �39.14
7.05–10.57 84,932 4446 77.88 �25.00
10.57–59.92 81,279 4412 80.76 �21.37

Aspect Flat 8536 2445 426.13 144.96 1.0028
North 134,772 9242 102.02 2.00

Northeast 139,425 8883 94.78 �5.36
East 142,555 8235 85.94 �15.15

Southeast 114,152 6084 79.29 �23.20
Southeast 95,915 6343 98.38 �1.63
Southwest 105,074 7614 107.80 7.51

West 129,898 9299 106.50 6.30
Northwest 134,278 9382 103.95 3.87

Curvature Convex 259,694 13,428 76.92 �26.23 0.9995
Flat 486,609 41,913 128.14 24.80

Concave 258,302 12,186 70.19 �35.40
SPI 11.97–12.67 94,145 6557 103.62 3.55 �0.9308

12.67–12.88 115,416 5381 69.36 �36.58
12.88–13.45 110,530 8968 120.71 18.82
13.45–13.80 111,883 6583 87.53 �13.31
13.80–14.22 103,867 6290 90.09 �10.43
14.22–14.64 96,776 5776 88.79 �11.89
14.64–15.20 97,141 6218 95.23 �4.89
15.20–15.97 93,636 6509 103.42 3.36
15.97–17.31 93784 7639 121.18 19.21
17.31–29.88 87,427 7606 129.43 25.80

TWI 5.46–8.41 97,945 5106 77.56 �25.42 1.1242
8.41–8.95 104,362 5071 72.29 �32.45
8.95–9.39 103,817 5231 74.96 �28.82
9.39–9.83 107,728 5814 80.29 �21.95
9.83–10.26 103,399 5925 85.25 �15.96
10.26–10.81 114,583 7200 93.48 �6.74
10.81–11.46 105,687 7084 99.72 �0.28
11.46–12.34 91,703 6470 104.96 4.84
12.34–14.19 91,708 6344 102.91 2.87
14.19–33.29 83,673 13,282 236.15 85.93

TRI 0–1.35 77,331 17,712 340.75 122.60 �0.7039
1.35–3.15 100,115 21,338 317.08 115.40
3.15–4.96 122,333 15,289 185.93 62.02
4.96–6.31 112,598 6483 85.66 �15.48
6.31–7.66 121,876 3536 43.16 �84.02

7.66–9.02253 113,222 1607 21.12 �155.52
9.02–10.82 112,925 893 11.76 �214.01
10.82–13.53 94,764 488 7.66 �256.90
13.53–18.94 78,637 167 3.16 �345.48

(continued)
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Table 1. Continued.
Layer Classes Cells Deposit FR Wi LR

18.94–115.03 70,804 14 0.29 �582.88
STI 0–0.67 76,710 14,482 280.86 103.27 �0.9018

0.67–2.03 113,574 12,710 166.49 50.98
2.03–3.38 119,717 8548 106.22 6.04
3.38–4.74 129,815 6382 73.14 �31.28
4.74–6.09 119,028 4930 61.62 �48.42
6.09–7.45 94,138 3662 57.87 �54.69
7.45–9.48 100,101 4081 60.65 �50.00
9.48–12.86 95,796 4360 67.71 �38.99
12.86–19.64 81,695 4395 80.04 �22.27
19.64–172.70 74,031 3977 79.92 �22.41

Distance from
Road (Meters)

0–178 101,775 7146 104.46 4.36 1.0003
178–402 100,680 7418 109.61 9.18
402–655 100,798 7143 105.43 5.28
655–936 100,275 7874 116.82 15.55
936–1259 100,451 9816 145.38 37.42
1259–1641 100,156 9986 148.33 39.43
1641–2096 100,123 8099 120.34 18.52
2096–2667 100,127 6218 92.39 �7.92
2667–3561 100,200 3780 56.12 �57.76
3561–8665 100,020 47 0.70 �496.32

Distance from
River (Meters)

0–360 100,581 37,312 551.89 170.82 �0.9940
360–796 100,594 15,141 223.92 80.61
796–1361 100,438 8848 131.06 27.05
1361–2047 100,531 3735 55.27 �59.29
2047–2755 100,432 1791 26.53 �132.69
2755–3493 100,463 673 9.97 �230.60
3493–4304 100,500 27 0.40 �552.23
4304–5237 100,359 0 0.00 0.00
5237–6362 100,395 0 0.00 0.00
6362–9323 100,312 0 0.00 0.00

Geology Sandstone, siltstone, shale,
conglomerate

516,130 15,673 23.21 45.18 0

Phyllite, greywacke 59,248 2088 3.09 52.43 191
Sand, silt, mud and gravel 45,723 6871 10.18 223.56 0.018
Sandstone, mudstone, conglomerate 223,469 15,631 23.15 104.06 54.96
Shale, conglomerate, sandstone, coal,

siltstone, basalt, tuff
80,354 10,002 14.81 185.18 0.104

Andesitic to rhyolitic flows and vol-
caniclastic rocks

108 0 0.00 0.00 0.991

Poorly lithified sandstone, conglom-
erate and mudstone

13,592 4449 6.59 486.96 272.08

Duricrusted palaeosols at the top of
deep weathering profiles

47,992 12,808 18.97 397.04 87.68

Sandstone, siltstone, mudstone, coal,
conglomerate

16,820 5 0.01 0.44 126.5

Volcanics, mainly basaltic lavas with
local rhyolite and trachyte;
some plugs

1169 0 0.00 0.00 0

Soil Leached sands and siliceous sands
on sandstones

1059 186 261.30 96.05 0

Hilly to steep hilly areas of metasedi-
ments and phyllites

75,574 23,542 463.43 153.35 0.003

Steep hilly to mountainous terrain on
metasediments and phyllites

36,227 8902 365.57 129.63 0.002

Low hilly terrain on basalts and sedi-
mentary rocks

29,829 0 0.00 0.00 0.240

Brown and grey cracking clays 160,242 3845 35.70 �103.01 178.8
Gently undulating area of tertiary

sediments and igneous rocks
557,524 24,349 64.97 �43.12 0.001

(continued)
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every conditioning factor, the higher the flood occurrence possibility is within that
class. Moreover, the negative Wi weights indicate the negative correlation among the
class and flood occurrence. For instance, the first three classes of the slope received
positive Wi weights; however, the rest of its seven classes gained minus values. This
means that by increasing the slope degree, the possibility of flood occur-
rence decreases.

The Wi technique is based on a statistical correlation of the flood inventory layer
with characteristics of the flood conditioning factors classes. Hence, the Wi weights
are only measured for flood occurrence classes. If the class does not hold any flood
occurrence, it does not have any association with the flood inventory (Bui et al.
2011). Table 1 shows that the highest elevated areas, regions far from rivers,
‘Andesitic’ and ‘Volcanics’ classes of geology; ‘sedimentary rocks’ and ‘hard acidic yel-
low and red mottled soils’ classes of soil map; ‘marsh’, ‘estuary’, and ‘horticulture’
classes of LULC did not show any correlation with the flood inventory map in this
study. Using the weighted sum option in the Spatial Analyst tool of ArcGIS, the final
flood probability index was obtained (Figure 3(b)). Similar to the FR analysis, the
Wi-derived flood probability index was classified into five susceptible classes using
the quantile method. The very high, high, moderate, low, and very low flood-suscepti-
bility zones have area percentages of 7.23%, 12.66%, 20.00%, 19.99%, and 40.12%,
respectively.

Table 1. Continued.
Layer Classes Cells Deposit FR Wi LR

Hilly country of sandstones and
intruded intermediate and
basic rocks

7913 0 0.00 0.00 0.423

Hard acidic yellow and yel-
low mottled

39,227 716 27.15 �130.36 32.287

Chief soils are hard acidic yellow and
red mottled soils

42,068 0 0.00 0.00 0

Sandstones, hard acidic and neutral
yellow and red soils

54,942 5987 162.11 48.31 0

LULC Reservoir/dam 7140 310 64.59 �43.71 0
Waste treatment and disposal 2071 294 211.20 74.76 0.001
Marsh/wetland 2752 0 0.00 0.00 0.013
Estuary/coastal waters 95 0 0.00 0.00 0.0009
River 3778 2809 1106.13 240.35 0.0198
Nature conservation 43,679 145 4.94 �300.81 16.469
Other minimal use 207,985 8227 58.85 �53.02 0.0310
Livestock grazing 82,234 13,900 251.47 92.21 12.082
Cropping 253 59 346.94 124.40 0.0007
Perennial horticulture 623 0 0.00 0.00 0.0129
Seasonal horticulture 317 0 0.00 0.00 20.994
Irrigated cropping 1786 269 224.07 80.68 0.7393
Irrigated perennial horticulture 3093 0 0.00 0.00 2.8561
Irrigated seasonal horticulture 3273 0 0.00 0.00 0.8670
Intensive horticulture 2059 0 0.00 0.00 0
Intensive animal production 1509 12 11.83 �213.45 0
Manufacturing and industrial 54,938 7100 192.27 65.37 0
Residential 453,604 18,177 59.62 �51.72 0
Services 102,415 15,217 221.05 79.32 0.5151
Utilities 3284 3 1.36 �429.84 0
Transport and communication 6181 363 87.37 �13.50 0
Mining 21,536 642 44.35 �81.31 0
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5.3. LR outcomes

LR analysis was undertaken using SPSS software, and LR coefficients were derived for
each flood conditioning factor. Similar to Wi, the negative LR weights indicate that
the flood occurrence is negatively associated with the conditioning factor. In this
study, SPI, TRI, STI, and distance from rivers received negative weights, and other
flood conditioning factors achieved positive weights. The linear combination of the
LR constant value and the product of the conditioning factors and their related LR
coefficients are given in the following equation:

Z ¼ 1134þ 0:5907 �Altitudeð Þ þ 1:5919 � Slopeð Þ þ 1:0028 �Aspectð Þ
þ 0:9995 �Curvatureð Þ� 0:9308 � SPIð Þ þ 1:1242 �TWIð Þ� 0:7039 �TRIð Þ
� 0:9018 � STIð Þ þ 1:0003 �Distance from roadsð Þ
� 0:9940 �Distance from riversð Þ þ geologyð Þ þ soilð Þ þ LULCð Þ

(9)

The calculated Z parameter was entered into Equation (8) and the final LR-derived
flood probability index was produced. Subsequently, similar to the other two methods
of FR and Wi, the derived flood probability index was classified into five susceptible

Figure 3. Flood susceptibility maps derived from: (a) FR, (b) Wi and (c) LR.
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zones with the following area percentage for each class; very high (2.46%), high
(4.69%), moderate (24.59%), low (32.91%), and very low (35.33%).

5.4. Model validation evaluation and their comparison

A flood probability index of quality assessment values was calculated for each of the
three models using the training dataset to compare performance and the testing data-
set for validation. The TP, TN, FP, FN, PPV (%), NPV (%), sensitivity (%), specificity
(%), ACC (%), Kappa, and AUC values of these three models based on the testing
dataset are shown in Table 2. Evaluating the classification of flooded pixels, the FR
model indicated superior sensitivity (89.66%), followed by the Wi model (89.36%)
and then the LR model (85.03%). However, in terms of the classification of non-
flooded pixels, Wi demonstrated the greatest specificity (89.71%), followed by LR
(87.26%) and FR (86.67%). In terms of overall accuracy, Wi exceeded the other two
models, with an 89.51% rating. Wi also returned the highest Kappa index (0.852), fol-
lowed by LR (0.801) and FR (0.763), highlighting the significant mirroring of reality
in all of the models.

Figure 4 shows both the success and prediction rates for each model’s outcome.
The lowest accuracies were achieved for FR, possibly due to its simple calculation
procedure. FR can be more applicable in mapping linear features than modelling a
complex and nonlinear event, such as flooding. The measured prediction rates for
both LR and Wi were almost similar; however, Wi achieved a higher success rate of
82.34% compared to LR (80.75%). In addition, flood testing points were overlaid on
the three flood susceptibility maps. The numbers of existing flood points that fell into
the ‘very high’ susceptibility class were measured. The results were as follows: the
total testing points that fell into the ‘very high’ class of Wi, LR, and FR susceptibility
maps were 73%, 68%, and 57%, respectively, again reinforcing the superior perform-
ance of the Wi method. Flood susceptibility maps represent the areas with the highest
potential of flooding, which helps in managing and preventing this disaster in the
future. However, the susceptibility maps only show the predicted spatial distribution
of flood occurrences and do not give information regarding its temporal probability
(Bui et al. 2011).

Table 2. Model validation of the proposed FR, LR and Wi models.
Model validation

Statistical index parameters FR LR Wi

True positive (TP) 156 142 168
True negative (TN) 130 137 122
False positive (FP) 20 20 14
False negative (FN) 18 25 20
Positive predictive value (PPV) (%) 88.64 87.65 92.31
Negative predictive value (NPV) (%) 87.84 84.57 85.92
Sensitivity (%) 89.66 85.03 89.36
Specificity (%) 86.67 87.26 89.71
Overall accuracy (%) (ACC) 88.27 86.11 89.51
Kappa statistic 0.763 0.801 0.852
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Overall, Wi impressed, outperforming the other methods and producing the most
accurate outcomes, although all three models proved to be acceptable for susceptibil-
ity mapping in the study area. It can be concluded that Wi displayed the best per-
formance in this study, and the robustness of this method was demonstrated in flood
susceptibility modelling and prediction.

6. Conclusion

Flood susceptibility maps are a fundamental step in flood hazard, vulnerability, and
risk analysis. Therefore, it is essential to produce the most precise and reliable flood
susceptibility maps possible. The application of several statistical methods has previ-
ously been tested in flood modelling; however, the Wi method has not been evaluated
in this domain. The Wi technique has been found to be easily understandable and
cost-effective for mapping landslide prone areas. Hence, the question is whether it
would perform at similar levels of precision for flood susceptibility mapping. In the
current research, the Wi method was applied, and its outcome was compared with
the performance of two popular statistical techniques, FR and LR. The Wi method
recognizes the existence of the flooded points in each class of every conditioning fac-
tor and assigns weights to them individually. The final flood susceptibility map was
produced by combining all of the weight conditioning factors. The validation results
from AUC showed that the flood susceptibility maps generated from Wi and LR are
more reliable compared to the FR results. The prediction rates were 79.45%, 78.18%,
and 67.33% for the LR, Wi, and FR models, respectively. The accuracies indicated
that the two models of LR and Wi have almost equal prediction capabilities; however,
the Wi method had a higher success rate (82.34%) compared to the 80.75% obtained
by the LR method. This shows the superior performance of the Wi method compared

Figure 4. AUC outcome.
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to both FR and LR. Flood susceptibility maps have been shown to be of great assist-
ance in properly defining urban expansion and planning strategies. As the outcomes
are produced in medium-scale maps, in situ measurements are required in order to
have more accurate information about potential flooding regions. However, produc-
tion of probability maps, such as in this research, can greatly aid in understanding
flood risks and probabilities, leading to more preparedness for future flooding events.
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