Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/29658
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCrabbe, Richard Aen
dc.contributor.authorLamb, Daviden
dc.contributor.authorEdwards, Clareen
dc.date.accessioned2020-11-18T04:44:15Z-
dc.date.available2020-11-18T04:44:15Z-
dc.date.issued2020-02-
dc.identifier.citationInternational Journal of Applied Earth Observation and Geoinformation, v.84, p. 1-12en
dc.identifier.issn1872-826Xen
dc.identifier.issn1569-8432en
dc.identifier.urihttps://hdl.handle.net/1959.11/29658-
dc.description.abstractSpecies composition is one of the important measurable indices of alpha diversity and hence aligns with the measurable Essential Biodiversity Variables meant to fulfil the Aichi Biodiversity Targets by 2020. Graziers also seek for pasture fields with varied species composition for their livestock, but visual determination of the species composition is not practicable for graziers with large fields. Consequently, this study demonstrated the capability of Sentinel-1 Synthetic Aperture Radar (S1) and Sentinel-2 Multispectral Instrument (S2) to discriminate pasture fields with single-species composition, two-species composition and multi-species composition for a pastoral landscape in Australia. The study used K-Nearest Neighbours (KNN), Random Forest (RF) and Support Vector Machine (SVM) classifiers to evaluate the strengths of S1-alone and S2-alone features and the combination of these S1 and S2 features to discriminate the composition types. For the S1 experiment, KNN which was the reference classifier achieved an overall accuracy of 0.85 while RF and SVM produced 0.74 and 0.89, respectively. The S2 experiment produced accuracies higher than the S1 in that the overall performance of the KNN classifier was 0.87 while RF and SVM were 0.93 and 0.89, respectively. The combination of the S1 and S2 features elicited the highest accuracy estimates of the classifiers in that the KNN classifier recorded 0.89 while RF and SVM produced 0.96 and 0.93, respectively. In conclusion, the inclusion of S1 features improve the classifiers created with S2 features only.en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofInternational Journal of Applied Earth Observation and Geoinformationen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleDiscrimination of species composition types of a grazed pasture landscape using Sentinel-1 and Sentinel-2 dataen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jag.2019.101978en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameRichard Aen
local.contributor.firstnameDaviden
local.contributor.firstnameClareen
local.subject.for2008070104 Agricultural Spatial Analysis and Modellingen
local.subject.for2008090905 Photogrammetry and Remote Sensingen
local.subject.seo2008830403 Native and Residual Pasturesen
local.profile.schoolOffice of Faculty of Science, Agriculture, Business and Lawen
local.profile.schoolSchool of Science and Technologyen
local.profile.emaildlamb@une.edu.auen
local.profile.emailkedwar30@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeNetherlandsen
local.identifier.runningnumber101978en
local.format.startpage1en
local.format.endpage12en
local.identifier.scopusid85085559239en
local.peerreviewedYesen
local.identifier.volume84en
local.access.fulltextYesen
local.contributor.lastnameCrabbeen
local.contributor.lastnameLamben
local.contributor.lastnameEdwardsen
dc.identifier.staffune-id:dlamben
dc.identifier.staffune-id:kedwar30en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/29658en
local.date.onlineversion2019-10-03-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDiscrimination of species composition types of a grazed pasture landscape using Sentinel-1 and Sentinel-2 dataen
local.relation.fundingsourcenoteFood Agility CRC Ltd is funded under the Commonwealth Government CRC Programen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorCrabbe, Richard Aen
local.search.authorLamb, Daviden
local.search.authorEdwards, Clareen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/233fbbbe-fc71-4f4f-9b33-a786db756c20en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000501404500022en
local.year.available2019en
local.year.published2020en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/233fbbbe-fc71-4f4f-9b33-a786db756c20en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/233fbbbe-fc71-4f4f-9b33-a786db756c20en
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.for2020401304 Photogrammetry and remote sensingen
local.subject.seo2020100503 Native and residual pasturesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/DiscriminationLambEdwards2020JournalArticle.pdfPublished version5.05 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

29
checked on Jan 25, 2025

Page view(s)

1,130
checked on Mar 8, 2023

Download(s)

20
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons