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A B S T R A C T

Species composition is one of the important measurable indices of alpha diversity and hence aligns with the
measurable Essential Biodiversity Variables meant to fulfil the Aichi Biodiversity Targets by 2020. Graziers also
seek for pasture fields with varied species composition for their livestock, but visual determination of the species
composition is not practicable for graziers with large fields. Consequently, this study demonstrated the capability
of Sentinel-1 Synthetic Aperture Radar (S1) and Sentinel-2 Multispectral Instrument (S2) to discriminate pasture
fields with single-species composition, two-species composition and multi-species composition for a pastoral
landscape in Australia. The study used K-Nearest Neighbours (KNN), Random Forest (RF) and Support Vector
Machine (SVM) classifiers to evaluate the strengths of S1-alone and S2-alone features and the combination of
these S1 and S2 features to discriminate the composition types. For the S1 experiment, KNN which was the
reference classifier achieved an overall accuracy of 0.85 while RF and SVM produced 0.74 and 0.89, respec-
tively. The S2 experiment produced accuracies higher than the S1 in that the overall performance of the KNN
classifier was 0.87 while RF and SVM were 0.93 and 0.89, respectively. The combination of the S1 and S2
features elicited the highest accuracy estimates of the classifiers in that the KNN classifier recorded 0.89 while
RF and SVM produced 0.96 and 0.93, respectively. In conclusion, the inclusion of S1 features improve the
classifiers created with S2 features only.

1. Introduction

Species composition is one of the important measurable indices of
alpha diversity and hence aligns with the measurable Essential
Biodiversity Variables (Kissling et al., 2018; Turak et al., 2017) meant
to assess the progress of the Aichi Biodiversity Targets by 2020 (https://
www.cbd.int/sp/targets/). The species composition of pasture fields is
typically characterised with different grass types, legumes and forbs
which are available for livestock feeding. The variability of species
composition is often dictated by the soil quality (Pallett et al., 2016),
changes in climate (rainfall and temperature) and management prac-
tices (e.g. the grazing system) (Štýbnarová et al., 2015). In livestock
grazing environments, although the nutritive value of the grass type is
important, variations in the species composition of a field is equally
valuable to graziers (Jing et al., 2017). A field characterised with di-
verse grass types at a point in time offers livestock a range of nutrition
(and hence a balanced diet), and higher dry matter yield (Kirwan et al.,
2007; Sanderson et al., 2005; Skinner et al., 2006). Additionally,

pasture fields with diverse species offer a greater resistance to en-
vironmental stress (e.g. drought) (Tilman and Downing, 1994) and
weed invasion (Dodd et al., 2004; Kirwan et al., 2007; Tracy et al.,
2004; Tracy and Sanderson, 2004). As a result, knowledge of the dif-
ferent types of species that constitute the biomass in pasture fields is
important for feed as well as field management decisions.

Visual survey (or ecological methods) has long been the conven-
tional method for assessing species composition of pasture fields to
make such management decisions. Practitioners of the visual method
rely on the physiological and morphological/ phenological differences
(such as in the seed head, stem, leaves and flowers), to discriminate the
plant species. However, this method requires extensive training espe-
cially with heterogeneous sites and can be burdensome (or impractic-
able) to undertake with larger fields and extensive landholdings.

To resolve the challenges of visual assessment, remote sensing data
and techniques have been explored (Lopes et al., 2017; Muldavin et al.,
2001; Peng et al., 2018). Spatial variations in plant species composition
translates to spectral heterogeneity across a target area which makes it
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possible to estimate species diversity through optical remote sensing
(Cai et al., 2014; Lopes et al., 2017; Rocchini, 2007). Moreover, the
variation of pasture species due to their differences in phenology sug-
gests that temporal variations can be complementary to spectral var-
iation for the classification of species diversity (Lopes et al., 2017). At a
fine spatial scale, images derived from consumer-grade cameras (RGB)
have been used to discriminate broadleaf and narrow-leaf plants using
their morphological features (Lamm et al., 2002; Weis and Gerhards,
2007). Furthermore, Golzarian and Frick (Golzarian and Frick, 2011)
combined colour, textural and geometric information to discriminate
wheat (Elymus scaber), ryegrass (Lolium rigidum) and brome grass
(Bromus spp.) in Southern Australia. In a recent study, Bao et al. (Bao
et al., 2017) observed that the spectral band ranging between 1780 nm
and 1050 nm was able to discriminate 17 alpine wetland grasses which
showed differences in leaf area index and chlorophyll content. Peng
et al. (Peng et al., 2018) used vegetation indices, extracted from a
ground-based hyperspectral sensor, to measure species diversity of
temperate grassland in Northern China. Although these remote sensing
methods (proximal sensing or aerial sensing) offer high spatial and

spectral resolution for improved separability of plant species, they are
limited in regular revisit frequency and difficult to apply at larger
spatial scales. At a landscape scale, past studies have related the phe-
nological diversity to plant species diversity using optical, satellite re-
mote sensing (Rocchini et al., 2016). Moreover, satellite remote sensing
can improve the temporal granularity of observing plant species di-
versity. The standard optical spectral bands, and their combinations via
vegetation indices, have been reported to be indicative of species di-
versity. Species diversity indicators such as species composition or
species richness, Shannon and Simpson indices have been estimated
using Normalised Difference Vegetation Index (Bawa et al., 2002;
Foody and Cutler, 2002; Gould, 2000). Other vegetation indices such as
Enhanced Vegetation Index, Soil Adjusted Vegetation Index, Atmo-
spheric Vegetation Index, Middle Infrared Index and Infrared Index
have also been found to exhibit strong correlations with plants species
diversity (Bawa et al., 2002; Cabacinha and de Castro, 2009; Nagendra
et al., 2010; Schowengerdt, 2006). Notwithstanding the use of vegeta-
tion indices, some spectral bands on their own such as the near infrared,
middle infrared and thermal infrared can be used for plant species

Fig. 1. A Sentinel-2 image of the study area (inset: location of study area in Australia) with the central location point of the 20 sampling sites from which 1080 pixels
were extracted and used. The sampling sites are distinguished by their identification number. Each sampling site is composed of 9 Sentinel-2 pixels which makes the
area of a sampling site to be 900m2.
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discrimination (Cai et al., 2014; Everitt et al., 2007; Muldavin et al.,
2001). A multitude of studies presented in the review work of Rocchini
et al. (Rocchini et al., 2016) and Kuenzer at al. (Kuenzer et al., 2014)
used optical satellite remote sensing data to measure or discriminate
plants species diversity. However, due to the insensitivity of spectro-
optical bands at dense canopies, a few number of past studies have
employed or integrated Synthetic Aperture Radar (SAR) in the dis-
crimination of pasture species composition (Crabbe et al., 2019a; Hill
et al., 2005; Price et al., 2002; Smith and Buckley, 2011). Other past
studies have combined Sentinel-1 SAR (S1) and Sentinel-2 optical (S2)
data for land cover/use classification purposes (Clerici et al., 2017;
Kaplan and Avdan, 2018; Mercier et al., 2019; Schmidt et al., 2018;
Steinhausen et al., 2018). Nonetheless, there are no studies into the
combination of S1 and S2 data for the classification of pasture grass
species composition.

Owing to the spatial, spectral and temporal resolutions of the S1 and
S2 sensors and the fact that these sensors have not been explored to-
gether with regards to classifying pasture species composition, this
study assessed the extent to which the S1 (SAR information) supports
the S2 (optical information) in discriminating three different classes of
pasture species composition using K-Nearest Neighbour (KNN),
Random Forest (RF) and Support Vector Machine (SVM) classifiers. The
KNN classifier served as the reference classifier to evaluate the perfor-
mance of RF and SVM.

2. Materials and methods

2.1. Characteristics of the study area

The experiments of this study were conducted on one of the
University of New England SMART Farms located near Armidale
(30°26′6″S, 151°37′30″E) (Fig. 1). The farm size is 740 ha and is com-
posed of numerous pasture fields of different grass types, with grazing
sheep and cattle rotated onto the fields throughout the year. Up to
twenty different fields were sampled for this study. Each of the field
sample sites measured 30m x 30m to provide 9 pixels per field for the
satellite images. Further details of the study site and the selection of
sampling sites can be found in (Crabbe et al., 2019a,b).

2.2. Field sampling of pasture types and classification

The field measurements were conducted between 2017 and 2018 on
dates that aligned with S1 and S2 overpasses (Table 1). The majority of
measurements were acquired in October 2017 (mid spring) and Feb-
ruary 2018 (late summer) and involved 20 sites. A smaller number of
sites were sampled on other dates (Table 1). The visual surveys of
pasture species were conducted using the BOTANAL protocol as im-
plemented in the work of Crabbe et al. (Crabbe et al., 2019a). BO-
TANAL is a comprehensive field sampling procedure, designed by
Commonwealth Scientific and Industrial Research Organisation
(CSIRO) of Australia, and thus widely used for visual estimation of

pasture species composition and pasture yield in Australia (Tothill
et al., 1978). On the field, pasture species were identified by their
morphology or physical characteristics. The major dominant species
surveyed were wallaby grass (Austrodanthonia spp.), red grass (Bo-
thriochloa macra), poa tussock (Poa labillardierei), summer grass (Digi-
taria sanguinalis), Parramatta grass (Sporobolus creber), wheat grass
(Elymus scaber), cocksfoot (Dactylis glomerata), tall fescue (Festuca ar-
undinacea Schreb.), phalaris (Phalaris aquatica), Yorkshire fog (Holcus
lanatus), wild sorghum (Sorghum leioclladum), microlaena (Microlaena
stipoides) and paddock lovegrass (Eragrostis leptostachya). The canopy
structure of these species make them visually discriminable into three
groups based on the physical characteristics of species seed heads (Kahn
et al., 2003, Fig. 2). Through the BOTANAL protocol, the various spe-
cies dominating the field were estimated using a dry-weight-rank
method. This method offers a percentage estimate of the relative con-
tribution of the different species in the sample area. To preserve the
reliability and repeatability of the visual survey process, the assess-
ments were all conducted by the same expert for all sampling sites and
dates.

For the purposes of assessing pasture species diversity, a rule-based
technique was applied to group these individual pasture types into
three classes; single-species, two-species composition and multi-species
composition (Fig. 3). Firstly, the rule excluded species with a botanical
composition of less than 10%. Then, sites with 90% or more of the
botanical composition comprising of a single species were classified as
single-species. If two species constituted at least 90% of the botanical
composition with neither of the two constituting two-thirds of their
total proportion, then a two-species class was assigned to the site. The
remaining sites were assigned to the multi-species class. This classifi-
cation process was conducted at the pixel-scale of S2. Since the image
classification was implemented at pixel scale (i.e., 10m×10m), the
species class of a site was allocated to every single pixel that formed the
sampling site. A similar approach was recently used in Crabbe et al.
(Crabbe et al., 2019a).

2.3. Preprocessing of Sentinel-1 and Sentinel-2 images

The S1 and S2 images were downloaded from the Scientific Hub of
the European Space Agency (Table 1). The single look complex (SLC)
and ground range detected (GRD) products of S1 were used. Depending
on the field measurement date, S2 images from either sensor A or B
were accessed. It is worth noting that due to the presence of cloud cover
over the study site, the acquisition dates of S2 images for February,
October and December 2017 were not exactly synchronous to the cor-
responding field sampling dates. The S1 images were processed to ex-
tract backscattering coefficients, polarimetric scattering and textural
metrics. Satellite orbit data downloaded from the archive of ESA were
used for both SLC and GRD images to improve the radiometric and
geometric calibrations of these images. The GRD images were radio-
metrically calibrated and then minimised the effect of random speckles
using the Refined Lee method (Lee, 1981; Yommy et al., 2015).
Moreover, the contributions of topography to the radar backscattering
were minimised by using a 1m digital terrain model for the terrain
correction process (Crabbe et al., 2019b). These images were then
matched to the geographic extent of the study site using a bilinear in-
terpolation resampling method. Since the VH polarisation is noted to be
more responsive to vegetation canopy volume, this polarisation was
used for the GLCM textural analysis. The GLCM textural features were
obtained by using a window size of 9×9 pixels which was moved at
intervals of one pixel in the north, northeast, east and northwest di-
rections of the neighbourhood centred on the central coordinates of the
sample sites. The mean values of the GLCM statistics from all of these
directions were computed to produce the GLCM textural features. A
total of 10 GLCM textural features were extracted; contrast (CON),
dissimilarity (DIS), homogeneity (HOM), angular second moment
(ASM), energy (ENE), entropy (ETP) and maximum probability (MAX).

Table 1
Field sampling and closest, usable Sentinel-1A and Sentinel-2 (both A and B
sensors) image acquisition dates.

Field sampling date Sentinel-1 sampling
date

Sentinel-2 sampling date
(variant)

13 February 2017 13 February 2017 24 February 2017 (S2A)
6 July 2017 7 July 2017 9 July 2017 (S2B)
11 October 2017 11 October 2017 22 October 2017 (S2A)
12 December 2017 10 December 2017 11 November 2017 (S2A)
16 January 2018 15 January 2018 10 January 2018 (S2A)
8 February 2018 8 February 2018 9 February 2018 (S2A)
16 March 2018 16 March 2018 16 March 2018 (S2B)
26 July 2018 26 July 2018 24 July 2018 (S2B)
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The rest of the textural features were mean (MEA), variance (VAR) and
correlation (COR).The sub-swath of the SLC images that contains the
study area was used to reduce the processing time. These SLC images
were radiometrically corrected while all bursts were removed.

Moreover, the radiometric quality of the SLC images was enhanced
using a Refined Lee polarimetric filter. Eigenvector polarimetric de-
composition was then applied to extract the features that measure the
polarimetric scattering characteristics; entropy (polETP), anisotropy

Fig. 2. The groups of major dominant species on the basis of the morphology of their seed heads (Kahn et al., 2003).

Fig. 3. Sampled pasture fields with the botanical composition dominated by single-species (S), two-species (T) and multi-species (M).
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(polATP) and scattering alpha angle (polAPH).
The Top of Atmosphere products of the Sentinel-2 were converted to

surface reflectance using the Sen2cor script (Louis et al., 2016). The S1
and S2 images were co-located with the S1 images being slave images to
the S2 images. A square window of 3× 3 pixels was then moved across
the entire study area to extract the pixel values for all of the estimated
features (including 10 of the S2 spectral bands).

2.4. Description of the KNN, RF and SVM classifiers

Machine learning classifiers have become important in remote
sensing due to the fact that they are particularly suited to modelling
complex class signatures, are able to handle large groups of predictor
variables, and are insensitive to data distribution. Many machine
learning classifiers have been adopted in remote sensing but the often
used methods are K-Nearest Neighbours (KNN) (Maselli et al., 2005),
Random Forest (RF) (Adelabu and Dube, 2015; Berhane et al., 2018;
Crabbe et al., 2019a; Gislason et al., 2006; Liu et al., 2018; Tian et al.,
2016; Yan and de Beurs, 2016) and Support Vector Machine (SVM)
(Huang et al., 2002; Pal and Foody, 2012; Pal and Mather, 2005) due to
simplicity in their hyper-parameterisation, and high performance.
Specifically, this study used RF and SVM because in an earlier paper
where 179 classifiers were evaluated using over 120 different data sets,
RF and SVM outperformed all of the other classifiers (Fernández-
Delgado et al., 2014). The KNN classifier was used as a reference
classifier to assess the performance of the RF and SVM classifiers.

The KNN classifier is the simplest among the three classifiers in that
the user has only one parameter (i.e. the K) which indicates the number
of data points closest (neighbours) to the unknown data point to define
the decision boundary, and this is a user-defined parameter. The class of
the unknown sample point is determined by a majority vote of its
neighbours, with the most common class among the K-nearest neigh-
bours allocated to this unknown sample point (Altman, 1992). RF is a
tree ensemble classifier which uses a multitude of decision trees to re-
solve the limitations of a single decision tree algorithm (Belgiu and
Drăguţ, 2016; Breiman, 2001; Cutler et al., 2007). In RF, two hyper-
parameters need to be set by the user, the randomly selected number of
features (known as mtry) and the number of decision trees to be con-
structed (n). It has been shown in earlier studies that of all the RF
parameters these two parameters are more important as they can have
significant influence on the performance of the classifier (Degenhardt
et al., 2017; Díaz-Uriarte and Alvarez de Andrés, 2006; Shi and Yang,
2016). SVM functions by exploring the feature space to identify the data
points that are closest to the optimal decision boundary (hyperplane)
between the classes (Cortes and Vapnik, 1995; Huang et al., 2002;
Maxwell et al., 2018; Mountrakis et al., 2011; Pal and Foody, 2012; Pal
and Mather, 2005; Vapnik, 1995). Thus, the goal of SVM is to select the
optimal hyperplane which maximises the margin between the support
vectors (i.e. the data points closest to the hyperplane) (Vapnik, 1995).
SVM was originally developed to handle two-class problems and to find
linear class boundaries (hyperplanes), but recent studies have used the
SVM for multi-class problems (Bishop et al., 2019; Chih-Wei and Chih-
Jen, 2002; Qi et al., 2004). To minimise errors in the performance of
SVM, the cost, C, and gamma, γ, parameters are required to be set
manually. Whilst the cost, C, explains the trade-off between margin and
misclassification error, the gamma, γ, defines the extent of the influence
of a single support vector (Cortes and Vapnik, 1995). Further details on
the KNN, RF and SVM classifiers for remote sensing can be found in
Maxwell et al. (2018).

2.5. Model data and hyper-parameter tuning

The model data comprised of 1080 observations and 27 features.
The single-species composition class was composed of 234 observations
while two-species and multi-species had 288 and 558 observations,
respectively. This model data was randomly split into training and

testing sets. The training set used 80% of the model data, while the
remaining data was retained for model testing. The MinMax technique
was used to scale model features to values ranging between 0–1 in order
to minimise the model feature space for improved performance.
Specifically, the minimum and maximum values used to scale the
training set were likewise applied to scale the test set. To minimise
overfitting due to the imbalanced class size, a stratified 10-fold cross
validation technique was used to tune for the hyper-parameters of the
classifiers. In RF, the optimal number of random features to grow a
single tree (mtry) was tuned for, while the parameters for the total
number of trees to grow and minimum number of terminal nodes were
taken from the work of Crabbe et al. (2019a). The number of neigh-
bours (K) was tuned for the KNN classifier while gamma and cost of
constraints violation were tuned for the SVM classifier. The radial basis
kernel was applied in the SVM models. The correlation feature selection
algorithm from the FSelector package in R was used for feature selection
(Pal and Foody, 2010; Romanski et al., 2018).

2.6. Classification models and their evaluation

Three different models were built for each of the three classifiers (a
total of 9 models). The first set of the classification models were built
with S1 features alone while the second set of models were para-
meterised with S2 features alone. The third set of models combined the
S1 and S2 features (COMB). The evaluation of these models were based
on producer’s accuracy (PA), user’s accuracy (UA), overall accuracy
(OA) and F1 score (F1). These metrics were all scaled between 0 and 1.
The F1 score provides the harmonic average of the PA and UA estimates
and is calculated as,

+
− −PA UA

2
1 1 . Since the F1 score accounts for both the

PA and UA, it was the measure that was reported for the class-wise
performance of the classifiers. The data processing, analyses and clas-
sification were all conducted in R using the Classification and
Regression Training (CARET) package (Kuhn, 2008).

3. Results

3.1. Optimal features and model parameters

The optimal features selected to create the S1models were contrast
(CON), angluar second moment (ASM), variance (VAR) and polari-
metric mean scattering alpha angle (polAPH). For the S2, the optimal
features were the red band (B3), red-edge bands (B6), narrow near
infrared (B8A) and the short wave band (B11). The grid search for the
KNN classifier proved that the parameterisation of this model with
three neighbours (i.e. K=3) achieved the highest accuracy values of
0.72, 0.91 and 0.91 for S1, S2 and COMB experiments, respectively
(Fig. 4a). For RF classifier, the optimal mtry value for S1 was 2
(OA=0.73) while that of the S2 and COMB experiments was found to
be 3 as the highest prediction accuracies were 0.95 and 0.96, respec-
tively (Fig. 4b). Results from the grid search for the SVM classifier
showed that gamma values of 4, 8 and 0.5 with a uniform cost value of
8 achieved the optimal performance for S1, S2 and COMB experiments,
respectively.

3.2. Performance of the Sentinel-1 and Sentinel-2 for the discrimination of
pasture species composition

Fig. 5 provides the spatial characterisation of the predictive per-
formances of the KNN, RF and SVM classifiers for features derived from
the S1 products. The result in Fig. 5 is just a subset of the whole per-
formance of the S1 which is presented in Fig. 8a. For the single-species
class, the KNN classifier produced an F1 score of 0.78 while the RF and
SVM classifiers produced F1 scores of 0.63 and 0.84, respectively. Re-
garding the two-species class, the F1 scores for KNN, RF and SVM were
0.84, 0.67 and 0.88, respectively. The multi-species classification
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resulted in F1 scores of 0.89 for KNN, 0.80 for RF and 0.91 for the SVM.
The OA values for the KNN, RF and SVM were 0.85, 0.74 and 0.89,
respectively.

A spatial representation of the performances of the KNN, RF and
SVM classifiers in comparing the observed class to predicted class is
shown in Fig. 6. Whilst Fig. 6 offers only some of the performance re-
sults of the classifiers, the complete evaluation of these classifiers for S2
can be seen in Fig. 8b. For the classification based on S2-alone features,
the F1 scores produced by the KNN, RF and SVM classifiers for the
single-species class were 0.82, 0.93 and 0.87, respectively. In the case of
the two-species class, the F1 scores were 0.87, 0.92 and 0.84 for the
KNN, RF and SVM, respectively. Regarding the multi-species class, the
RF classifier produced the least prediction error as its F1 score was 0.94.
The F1 scores for the KNN and SVM were 0.90 and 0.91, respectively.
The OA values for the KNN, RF and SVM were 0.87, 0.93 and 0.89.

Fig. 7 provides some of the results of the spatial characterisation of
the predictive performances of the KNN, RF and SVM classifiers for the
COMB. Meanwhile, the full result of the performances of these classi-
fiers based on the COMB is encapsulated in Fig. 8 c. The combination of
S1 and S2 features produced different classification performances than
the S1-alone and S2-alone. Regarding the single-species class, the KNN
achieved an F1 score of 0.84 while the RF and SVM achieved 0.96 and
0.95, respectively. Furthermore, the prediction of the two-species class
resulted in F1 scores of 0.87, 0.96 and 0.95 for the KNN, RF and SVM,
respectively. The prediction of the multi-species class was characterised
with F1 scores of 0.92 for the KNN and 0.96 for both the RF and SVM
classifiers The combination of the S1 and S2 features achieved overall
accuracies of 0.89, 0.96 and 0.95 for the KNN, RF and SVM classifiers,
respectively.

4. Discussion

4.1. Evaluation of KNN, RF and SVM classifiers

Regarding the overall accuracies obtained with S1 features, the SVM
outperformed the referenced classifier (KNN) while the RF classifier
failed to improve KNN. This performance of RF and SVM against the
referenced classifier was consistent across the class-wise predictions. In
other words, the SVM classifier outperformed the KNN and RF in dis-
criminating all of the species composition types. With the application of
the S2 features, both RF and SVM classifiers outperformed KNN with
the RF classifier producing the highest accuracies for all of the classes.
All of the classifiers proved that the S2 outperforms the S1 in the dis-
crimination of the species composition types. This observation is a

confirmation of previous studies that also reported higher performance
of the optical features over the SAR features in vegetation classification
(Hill et al., 2005; Mahdianpari et al., 2019; Price et al., 2002).The S2 is
expected to discriminate the fields (one-species, two-species and multi-
species) based upon the variations of canopy chlorophyll and canopy
water contents. In this study, the green (Band 3), red edge (Band 6) and
near-infrared (Band 8A) spectral bands of the S2 accounted for the
variations of chlorophyll while the short wave infrared band (Band 11)
offered information linked with the canopy water content. The per-
formance of the S1 against the S2 is not surprising given that the S1
sensor offers only a partial (dual) polarimetric information thereby
limiting the conduction of other polarimetric analyses. This study thus
suggests future studies to explore full polarimetric SAR data in order to
comprehensively evaluate their contributions to species discrimination.

Compared to the KNN classifier, SVM generally offered the highest
accuracies in all of the experiments which agrees with the observations
reported in earlier studies (Cao et al., 2018; Maxwell et al., 2015; Zhang
and Xie, 2013). It is also important to mention that except for the S1
experiment, the RF also improved the KNN classifier. The inclusion of
the S1 features improved the S2-alone for the prediction of all of the
different species composition fields. In other words, all of the classifiers
exhibited improvements in prediction accuracies. Compared to the KNN
classifier, the prediction accuracies of RF and SVM were superior in that
while the KNN achieved overall accuracy of 0.89 the RF and SVM were
0.96 and 0.95, respectively. For the COMB experiment, the RF and SVM
prediction accuracies were similar and it is not surprising that they both
outperformed the referenced classifier (KNN) as this agrees with the
observations of earlier studies (Fernández-Delgado et al., 2014). Unlike
the KNN classifier, the RF and SVM algorithms are known to be more
efficient in handling the complexities of high dimensional data space
(Pappu and Pardalos, 2014).

Whilst the S2 provides optical information which includes the
chlorophyll and water content of the plant canopy, the S1 SAR evalu-
ates the different species composition through the geometric char-
acteristics (height, orientation, density and shape) of the plants. For this
reason, the support S1 lends to S2 in the discrimination of the plant
species cannot be underestimated, especially in an active grazing en-
vironment such as the area studied in this paper. Livestock grazing is
likely to alter the species composition of the site and the geometry of
the plant canopy, and hence influences the observations from the S1
and S2 sensors. Particularly for the S1 the change of the density of the
plant canopy can elicit different polarimetric scattering processes or a
multiple scattering mechanism as reported in an earlier study con-
ducted in this study area (Crabbe et al., 2019b). This scattering process

Fig. 4. Tuning for; (a) the K parameter of k-nearest neighbours and (b) mtry parameter of random forest for models created with Sentinel-1 alone (S1) features,
Sentinel-2 alone features (S2) and their combination (COMB).
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Fig. 5. Spatial characterisation of the predictive performances of; (a) K-Nearest Neighbours, (b) Random Forest and (c) Support Vector Machine using Sentinel-1
features. In the interest of clarity, this result is 9% of the 214 observations (spanning all of the field measurement dates) that were used to test the classification
models. The species composition classes are single-species (s), two-species (t) and multi-species (m).
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Fig. 6. Spatial characterisation of the predictive performances of; (a) K-Nearest Neighbourhood, (b) Random Forest and (c) Support Vector Machine using Sentinel-2
features. In the interest of clarity, this result is 9% of the 214 observations (spanning all of the field measurement dates) that were used to test the classification
models. The species composition classes are single-species (s), two-species (t) and multi-species (m).
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Fig. 7. Spatial characterisation of the predictive performances of; (a) K-Nearest Neighbours, (b) Random Forest and (c) Support Vector Machine using the combi-
nation of Sentinel-1 and Sentinel-2 features. In the interest of clarity, this result is 9% of the 214 observations (spanning all of the field measurement dates) that were
used to test the classification models. The species composition classes are single-species (s), two-species (t) and multi-species (m).
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is as well captured in this current paper through the use of the mean
scattering alpha angle to assist the discrimination of the fields. The
predictability of the classifiers with S1-alone features is encouraging
especially to ecologists and the grazing industry as products derived
from the S1 SAR can be more reliable than those of the S2 for a regular
monitoring of the species composition. That is, the S2 is affected by
weather (environmental) conditions such as cloud cover and the ab-
sence of solar illumination. The high accuracies achieved with the S1 in
predicting multi-species composition fields suggest graziers can make
informed decisions on rotating the livestock as graziers often want to
know the fields with variable species composition.

4.2. Satellite remote sensing classification of pasture grass species
composition

This study follows earlier studies which demonstrated the ability of
satellite remote sensing in estimating or classifying plant species di-
versity due to the connection between spectral heterogeneity and plants
phenological/ morphological changes. That is, the success of S1 and S2
to discriminate the pasture fields into single-species, two-species and
multi-species classes is due to the sensitivity of these sensors to the bio-
physico-chemical (especially from S2 observation) and morphological
(especially S1 observation) differences in botanical composition be-
tween fields (Figs. 2, 3). Indeed livestock grazing aided in the mor-
phological differentiation between the sites as sites dominated with poa

Fig. 8. Evaluation of; (a) Sentinel-1, (b) Sentinel-2 and (c) the combination of the Sentinel-1 and –Sentinel-2 for the discrimination of different classes of pasture
species richness via k-nearest neighbours (KNN), random forest (RF) and support vector machine (SVM) classifiers. Whilst the x-axis denotes the three classes (single-
species, two-species and multi-species) and the three machine learning classifiers (KNN, RF and SVM), the y-axis provides the performances of the classifiers via
producer’s accuracy (PA), user’s accuracy (UA), F1 score (F1) and overall accuracy (OA).
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tussock (Poa labillardierei), Yorkshire fog (Holcus lanatus) or summer
grass (Digitaria sanguinalis) are likely to experience less or no grazing
due to their unpalatability. Since the performance of the S1 and S2 is
dependent on the plant morphology, the predictability of the classifiers
are expected to be lowered in the event of discriminating different
classes with similar morphology (e.g. clustered seed heads). Although
this current study produced classification models, the model results are
comparable to the observations of previous studies which produced
biodiversity indices (α-diversity) from satellite optical remote sensing
data (Feilhauer and Schmidtlein, 2009; Foody and Cutler, 2002;
Hernández-Stefanoni et al., 2012; Rocchini, 2007). It is worth men-
tioning that these previous studies focused on tree and shrub species
while this current study evaluates pasture species composition. More-
over, this current study unlike the aforementioned past studies in-
vestigated the gross morphological characteristics of the varied species
through SAR remote sensing in addition to the optical spectral in-
formation. Despite the classifiers created with S2 features generally
outperformed that of the S1, this study encourages the use of the S1
since on its own it performed fairly high, especially for the dis-
crimination of the multi-species composition fields. Additionally, in the
event of opaque atmosphere, the S1 can replace the S2 monitoring of
the species composition. We recommend this study be upscaled or
tested in other pastoral landscape with the inclusion of full polarimetric
SAR data and other machine/deep learning techniques to directly
support the actualisation of the Aichi biodiversity targets 5, 14 and 15
through the S1 and S2 earth observation missions.

5. Conclusions

This study has shown that the combination of Sentinel-1 and
Sentinel-2 data can support the measurement of pasture species com-
position of a grazing landscape to complement the manual methods and
the use of satellite remote sensing to achieving some of the Aichi bio-
diversity targets. The study used K-Nearest Neighbours (KNN), Random
Forest (RF) and Support Vector Machine (SVM) classifiers to explore
Sentinel-1 features, Sentinel-2 features and the combination of these
two sets of features to separate pasture fields into single-species com-
position, two-species composition and multi-species composition. The
RF and SVM classifiers generally produced higher prediction accuracies
than the reference classifier which was the KNN. The KNN, RF and SVM
classifiers created with Sentinel-2 features outperformed those created
with the Sentinel-1 features, but the inclusion of the Sentinel-1 features
improved the classifiers created with the Sentinel-2 features. Whilst the
overall accuracies for KNN, RF and SVM classifiers with Sentine-2
features only were 0.87, 0.93 and 0.89 respectively, the inclusion of
Sentinel-1 features improved these accuracy estimates to 0.89, 0.96 and
0.95, respectively. We encourage future studies to explore full polari-
metric C-band Synthetic Aperture Radar data such as RADARSAT to
improve this study.
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