Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/29239
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcPhee, M Jen
dc.contributor.authorWalmsley, B Jen
dc.contributor.authorDougherty, H Cen
dc.contributor.authorMcKiernan, W Aen
dc.contributor.authorOddy, V Hen
dc.date.accessioned2020-08-17T05:45:55Z-
dc.date.available2020-08-17T05:45:55Z-
dc.date.issued2020-08-
dc.identifier.citationAnimal, 14(S2), p. s396-s405en
dc.identifier.issn1751-732Xen
dc.identifier.issn1751-7311en
dc.identifier.urihttps://hdl.handle.net/1959.11/29239-
dc.description.abstractUntil recently, beef carcass payment grids were predominantly based on weight and fatness categories with some adjustment for age, defined as number of adult teeth, to determine the price received by Australian beef producers for slaughter cattle. With the introduction of the Meat Standards Australia (<b>MSA</b>) grading system, the beef industry has moved towards payments that account for intramuscular fat (<b>IMF</b>) content (marble score (<b>MarbSc</b>)) and MSA grades. The possibility of a payment system based on lean meat yield (<b>LMY</b>, %) has also been raised. The BeefSpecs suite of tools has been developed to assist producers to meet current market specifications, specifically P8-rump fat and hot standard carcass weight (<b>HCW</b>). A series of equations have now been developed to partition empty body fat and fat-free weight into carcass fat-free mass (<b>FFM</b>) and fat mass (<b>FM</b>) and then into flesh FFM (<b>FleshFFM</b>) and flesh FM (<b>FleshFM</b>) to predict carcass components from live cattle assessments. These components then predict denuded lean (kg) and finally LMY (%) that contribute to emerging market specifications. The equations, along with the MarbSc equation, are described and then evaluated using two independent datasets. The decomposition of evaluation datasets demonstrates that error in prediction of HCW (kg), bone weight (BoneWt, kg), FleshFFM (kg), FleshFM (kg), MarbSc and chemical IMF percentage (<b>ChemIMF%</b>) is shown to be largely random error (%) in evaluation dataset 1, though error for ChemIMF% was primarily slope bias (%) in evaluation dataset 1, and BoneWt had substantial mean bias (%) in evaluation dataset 2. High modelling efficiencies of 0.97 and 0.95 for predicting HCW for evaluation datasets 1 and 2, respectively, suggest a high level of accuracy and precision in the prediction of HCW. The new outputs of the model are then described as to their role in estimating MSA index scores. The modelling system to partition chemical components of the empty body into carcass components is not dependent on the base modelling system used to derive empty body FFM and FM. This can be considered a general process that could be used with any appropriate model of body composition.en
dc.languageenen
dc.publisherCambridge University Pressen
dc.relation.ispartofAnimalen
dc.titleLive animal predictions of carcass components and marble score in beef cattle: model development and evaluationen
dc.typeJournal Articleen
dc.identifier.doi10.1017/S1751731120000324en
dc.identifier.pmid32172725en
local.contributor.firstnameM Jen
local.contributor.firstnameB Jen
local.contributor.firstnameH Cen
local.contributor.firstnameW Aen
local.contributor.firstnameV Hen
local.subject.for2008070204 Animal Nutritionen
local.subject.for2008070103 Agricultural Production Systems Simulationen
local.subject.seo2008830301 Beef Cattleen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.schoolEnvironmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailmmcphee2@une.edu.auen
local.profile.emailbwalms2@une.edu.auen
local.profile.emailhdoughe2@une.edu.auen
local.profile.emailhoddy2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpages396en
local.format.endpages405en
local.identifier.scopusid85082004734en
local.peerreviewedYesen
local.identifier.volume14en
local.identifier.issueS2en
local.title.subtitlemodel development and evaluationen
local.contributor.lastnameMcPheeen
local.contributor.lastnameWalmsleyen
local.contributor.lastnameDoughertyen
local.contributor.lastnameMcKiernanen
local.contributor.lastnameOddyen
dc.identifier.staffune-id:mmcphee2en
dc.identifier.staffune-id:bwalms2en
dc.identifier.staffune-id:hdoughe2en
dc.identifier.staffune-id:hoddy2en
local.profile.orcid0000-0002-9278-795Xen
local.profile.orcid0000-0001-9918-4986en
local.profile.orcid0000-0003-1783-1049en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/29239en
local.date.onlineversion2020-03-16-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleLive animal predictions of carcass components and marble score in beef cattleen
local.relation.fundingsourcenoteMeat and Livestock Australia (B.SBP.0111)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMcPhee, M Jen
local.search.authorWalmsley, B Jen
local.search.authorDougherty, H Cen
local.search.authorMcKiernan, W Aen
local.search.authorOddy, V Hen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000553453300020en
local.year.available2020en
local.year.published2020en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/65a28e06-004f-4d46-a9af-ced5f0c942dfen
local.subject.for2020300303 Animal nutritionen
local.subject.for2020300205 Agricultural production systems simulationen
local.subject.seo2020100401 Beef cattleen
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
School of Environmental and Rural Science
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 14, 2024

Page view(s)

2,414
checked on Aug 3, 2024

Download(s)

10
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.