Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/28980
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoghaddar, Nasiren
dc.contributor.authorKhansefid, Majiden
dc.contributor.authorvan der Werf, Julius H Jen
dc.contributor.authorBolormaa, Sunduimijiden
dc.contributor.authorDuijvesteijn, Naomien
dc.contributor.authorClark, Samuel Aen
dc.contributor.authorSwan, Andrew Aen
dc.contributor.authorDaetwyler, Hans Den
dc.contributor.authorMacLeod, Iona Men
dc.date.accessioned2020-07-02T22:51:09Z-
dc.date.available2020-07-02T22:51:09Z-
dc.date.issued2019-12-05-
dc.identifier.citationGenetics Selection Evolution, 51(1), p. 1-14en
dc.identifier.issn1297-9686en
dc.identifier.issn0999-193Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/28980-
dc.descriptionSupplementary information accompanies this paper at https://doi.org/10.1186/s12711-019-0514-2en
dc.description.abstractBackground: Whole-genome sequence (WGS) data could contain information on genetic variants at or in high linkage disequilibrium with causative mutations that underlie the genetic variation of polygenic traits. Thus far, genomic prediction accuracy has shown limited increase when using such information in dairy cattle studies, in which one or few breeds with limited diversity predominate. The objective of our study was to evaluate the accuracy of genomic prediction in a multi-breed Australian sheep population of relatively less related target individuals, when using information on imputed WGS genotypes. <br/> Methods: Between 9626 and 26,657 animals with phenotypes were available for nine economically important sheep production traits and all had WGS imputed genotypes. About 30% of the data were used to discover predictive single nucleotide polymorphism (SNPs) based on a genome-wide association study (GWAS) and the remaining data were used for training and validation of genomic prediction. Prediction accuracy using selected variants from imputed sequence data was compared to that using a standard array of 50k SNP genotypes, thereby comparing genomic best linear prediction (GBLUP) and Bayesian methods (BayesR/BayesRC). Accuracy of genomic prediction was evaluated in two independent populations that were each lowly related to the training set, one being purebred Merino and the other crossbred Border Leicester x Merino sheep. <br/> Results: A substantial improvement in prediction accuracy was observed when selected sequence variants were fitted alongside 50k genotypes as a separate variance component in GBLUP (2GBLUP) or in Bayesian analysis as a separate category of SNPs (BayesRC). From an average accuracy of 0.27 in both validation sets for the 50k array, the average absolute increase in accuracy across traits with 2GBLUP was 0.083 and 0.073 for purebred and crossbred animals, respectively, whereas with BayesRC it was 0.102 and 0.087. The average gain in accuracy was smaller when selected sequence variants were treated in the same category as 50k SNPs. Very little improvement over 50k prediction was observed when using all WGS variants. <br/> Conclusions: Accuracy of genomic prediction in diverse sheep populations increased substantially by using variants selected from whole-genome sequence data based on an independent multi-breed GWAS, when compared to genomic prediction using standard 50K genotypes.en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofGenetics Selection Evolutionen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleGenomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populationsen
dc.typeJournal Articleen
dc.identifier.doi10.1186/s12711-019-0514-2en
dc.identifier.pmid31805849en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameNasiren
local.contributor.firstnameMajiden
local.contributor.firstnameJulius H Jen
local.contributor.firstnameSunduimijiden
local.contributor.firstnameNaomien
local.contributor.firstnameSamuel Aen
local.contributor.firstnameAndrew Aen
local.contributor.firstnameHans Den
local.contributor.firstnameIona Men
local.subject.for2008070201 Animal Breedingen
local.subject.for2008060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.subject.for2008060408 Genomicsen
local.subject.seo2008830310 Sheep - Meaten
local.subject.seo2008830311 Sheep - Woolen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.emailnmoghad4@une.edu.auen
local.profile.emailjvanderw@une.edu.auen
local.profile.emailnduijves@une.edu.auen
local.profile.emailsclark37@une.edu.auen
local.profile.emailaswan@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber72en
local.format.startpage1en
local.format.endpage14en
local.identifier.scopusid85076163059en
local.peerreviewedYesen
local.identifier.volume51en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnameMoghaddaren
local.contributor.lastnameKhansefiden
local.contributor.lastnamevan der Werfen
local.contributor.lastnameBolormaaen
local.contributor.lastnameDuijvesteijnen
local.contributor.lastnameClarken
local.contributor.lastnameSwanen
local.contributor.lastnameDaetwyleren
local.contributor.lastnameMacLeoden
dc.identifier.staffune-id:nmoghad4en
dc.identifier.staffune-id:jvanderwen
dc.identifier.staffune-id:nduijvesen
dc.identifier.staffune-id:sclark37en
dc.identifier.staffune-id:aswanen
local.profile.orcid0000-0002-3600-7752en
local.profile.orcid0000-0003-2512-1696en
local.profile.orcid0000-0001-8605-1738en
local.profile.orcid0000-0001-8048-3169en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/28980en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleGenomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populationsen
local.relation.fundingsourcenoteAustralian Sheep Cooperative Research Centre (Grant No. Program 3)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMoghaddar, Nasiren
local.search.authorKhansefid, Majiden
local.search.authorvan der Werf, Julius H Jen
local.search.authorBolormaa, Sunduimijiden
local.search.authorDuijvesteijn, Naomien
local.search.authorClark, Samuel Aen
local.search.authorSwan, Andrew Aen
local.search.authorDaetwyler, Hans Den
local.search.authorMacLeod, Iona Men
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/0bb738d0-f194-4351-9c46-4acfa68e8204en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000511598800001en
local.year.published2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/0bb738d0-f194-4351-9c46-4acfa68e8204en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/0bb738d0-f194-4351-9c46-4acfa68e8204en
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.for2020310506 Gene mappingen
local.subject.for2020310509 Genomicsen
local.subject.seo2020100412 Sheep for meaten
local.subject.seo2020100413 Sheep for woolen
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/GenomicMoghaddarVanDerWerfDuijvesteijnClarkSwan2019JournalArticle.pdfPublished version3.32 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

46
checked on Nov 9, 2024

Page view(s)

2,332
checked on May 19, 2024

Download(s)

120
checked on May 19, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons