Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/22311
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shahinfar, Saleh | en |
dc.contributor.author | Page, David | en |
dc.contributor.author | Guenther, Jerry | en |
dc.contributor.author | Cabrera, Victor | en |
dc.contributor.author | Fricke, Paul | en |
dc.contributor.author | Weigel, Kent | en |
dc.date.accessioned | 2018-01-10T16:44:00Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Journal of Dairy Science, 97(2), p. 731-742 | en |
dc.identifier.issn | 1525-3198 | en |
dc.identifier.issn | 0022-0302 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/22311 | - |
dc.description.abstract | When making the decision about whether or not to breed a given cow, knowledge about the expected outcome would have an economic impact on profitability of the breeding program and net income of the farm. The outcome of each breeding can be affected by many management and physiological features that vary between farms and interact with each other. Hence, the ability of machine learning algorithms to accommodate complex relationships in the data and missing values for explanatory variables makes these algorithms well suited for investigation of reproduction performance in dairy cattle. The objective of this study was to develop a user-friendly and intuitive on-farm tool to help farmers make reproduction management decisions. Several different machine learning algorithms were applied to predict the insemination outcomes of individual cows based on phenotypic and genotypic data. Data from 26 dairy farms in the Alta Genetics (Watertown, WI) Advantage Progeny Testing Program were used, representing a 10-yr period from 2000 to 2010. Health, reproduction, and production data were extracted from on-farm dairy management software, and estimated breeding values were downloaded from the US Department of Agriculture Agricultural Research Service Animal Improvement Programs Laboratory (Beltsville, MD) database. The edited data set consisted of 129,245 breeding records from primiparous Holstein cows and 195,128 breeding records from multiparous Holstein cows. Each data point in the final data set included 23 and 25 explanatory variables and 1 binary outcome for of 0.756 ± 0.005 and 0.736 ± 0.005 for primiparous and multiparous cows, respectively. The naïve Bayes algorithm, Bayesian network, and decision tree algorithms showed somewhat poorer classification performance. An information-based variable selection procedure identified herd average conception rate, incidence of ketosis, number of previous (failed) inseminations, days in milk at breeding, and mastitis as the most effective explanatory variables in predicting pregnancy outcome. | en |
dc.language | en | en |
dc.publisher | Elsevier Inc | en |
dc.relation.ispartof | Journal of Dairy Science | en |
dc.title | Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3168/jds.2013-6693 | en |
dc.subject.keywords | Animal Production | en |
dc.subject.keywords | Animal Reproduction | en |
dc.subject.keywords | Animal Breeding | en |
local.contributor.firstname | Saleh | en |
local.contributor.firstname | David | en |
local.contributor.firstname | Jerry | en |
local.contributor.firstname | Victor | en |
local.contributor.firstname | Paul | en |
local.contributor.firstname | Kent | en |
local.subject.for2008 | 070201 Animal Breeding | en |
local.subject.for2008 | 070206 Animal Reproduction | en |
local.subject.for2008 | 070299 Animal Production not elsewhere classified | en |
local.subject.seo2008 | 830302 Dairy Cattle | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | sshahinf@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20180110-160423 | en |
local.publisher.place | United States of America | en |
local.format.startpage | 731 | en |
local.format.endpage | 742 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 97 | en |
local.identifier.issue | 2 | en |
local.contributor.lastname | Shahinfar | en |
local.contributor.lastname | Page | en |
local.contributor.lastname | Guenther | en |
local.contributor.lastname | Cabrera | en |
local.contributor.lastname | Fricke | en |
local.contributor.lastname | Weigel | en |
dc.identifier.staff | une-id:sshahinf | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:22500 | en |
local.identifier.handle | https://hdl.handle.net/1959.11/22311 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Shahinfar, Saleh | en |
local.search.author | Page, David | en |
local.search.author | Guenther, Jerry | en |
local.search.author | Cabrera, Victor | en |
local.search.author | Fricke, Paul | en |
local.search.author | Weigel, Kent | en |
local.uneassociation | Unknown | en |
local.year.published | 2014 | en |
local.subject.for2020 | 300109 Non-genetically modified uses of biotechnology | en |
local.subject.for2020 | 300305 Animal reproduction and breeding | en |
local.subject.for2020 | 300399 Animal production not elsewhere classified | en |
local.subject.seo2020 | 100402 Dairy cattle | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
80
checked on Jan 4, 2025
Page view(s)
2,350
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.