Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/20026
Title: Crop choice and planting time for upland crops in Northwest Cambodia
Contributor(s): Montgomery, Steph (author); Martin, Robert  (author); Guppy, Christopher  (author)orcid ; Wright, Graeme C (author); Flavel, Richard  (author)orcid ; Phan, Sophanara (author); Im, Sophoeun (author); Touch, Van (author); Andersson, Karl  (author); Tighe, Matthew  (author)
Publication Date: 2016
DOI: 10.1016/j.fcr.2016.07.002
Handle Link: https://hdl.handle.net/1959.11/20026
Abstract: Crop yields are declining in Northwest Cambodia and crop failure in the pre-monsoon season is commonplace with 69% of farmers surveyed stating that drought is a constraint to production. Farmers currently lack knowledge to adopt more sustainable farming practices. A trial was conducted in Samlout District, Battambang Province, Northwest Cambodia to investigate the feasibility of a sowing time two months later than typical local practices. The aim of the shift in sowing time was to increase crop yield and reduce crop failure due to heat and drought stress throughout the season. A secondary aim was to compare sequences of continuous maize ('Zea mays' L.), and maize in rotation with peanut ('Arachis hypogaea'), sun- flower ('Helianthus annus'), sorghum ('Sorghum bicolor'), cowpea ('Vigna unguiculata') or mungbean ('Vigna radiata'). Sunflower and sorghum would be new crop type introductions, whilst the other crops are part of the traditional farming system in this region. The trial was undertaken for four cropping seasons over two years, during which time crops produced successful yields from the new sowing time windows. However, it was the maize-sunflower sequence that produced the highest gross margins. Maize-sunflower returns were $514 per hectare per annum more than the typical planting of continuous maize, and over $1100 per hectare per year higher than the other maize-legume and maize-sorghum rotations. Continuous maize produced the most stable yields across the four seasons and maize-sunflower produced the second highest mean yield. Results from modelling of soil moisture suggest that a shift in sowing time may avoid the extreme heat of the pre-monsoon season, and align crop growth stages with periods of more reliable rainfall. Site specific surface soil moisture data and rainfall was entered into the APSIM model to predict the soil profile moisture throughout the growing season (r² = 0.73). Both the modelling and on-farm research resulted in higher crop yields compared with traditional practices and expectations, and a low probability of crop failure. Crops of maize, sunflower and sorghum grew well from an early October sowing date into the post monsoon season and produced good yields on stored soil water with low plant stress due to mild seasonal conditions. Delayed sowing may prove to be the best option for farmers in the Northwest upland, achieved by a simple shift of sowing dates.
Publication Type: Journal Article
Source of Publication: Field Crops Research, v.198, p. 290-302
Publisher: Elsevier BV
Place of Publication: The Netherlands
ISSN: 1872-6852
0378-4290
Field of Research (FOR): 070108 Sustainable Agricultural Development
070107 Farming Systems Research
070101 Agricultural Land Management
Socio-Economic Outcome Codes: 970107 Expanding Knowledge in the Agricultural and Veterinary Sciences
960904 Farmland, Arable Cropland and Permanent Cropland Land Management
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Statistics to Oct 2018: Visitors: 263
Views: 352
Downloads: 1
Appears in Collections:Journal Article

Files in This Item:
2 files
File Description SizeFormat 
Show full item record

SCOPUSTM   
Citations

3
checked on Nov 26, 2018

Page view(s)

54
checked on Mar 5, 2019
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.