Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/8470
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Maen
dc.contributor.authorLeedham, Grahamen
dc.contributor.authorHiggins, Colinen
dc.contributor.authorHtwe, Swe Myoen
dc.date.accessioned2011-09-09T13:59:00Z-
dc.date.issued2008-
dc.identifier.citationPattern Recognition, 41(4), p. 1280-1294en
dc.identifier.issn1873-5142en
dc.identifier.issn0031-3203en
dc.identifier.urihttps://hdl.handle.net/1959.11/8470-
dc.description.abstractThere is a wish to be able to enter text into mobile computing devices at the speed of speech. Only handwritten shorthand schemes can achieve this data recording rate. A new, overall solution to the segmentation and recognition of phonetic features in Pitman shorthand is proposed in this paper. Approaches to the recognition of consonant outlines, vowel and diphthong symbols and shortforms, which are different components of Pitman shorthand, are presented. A new rule is introduced to solve the issue of smooth junctions in the consonant outlines which was normally the bottleneck for recognition. Experiments with a set of 1127 consonant outlines, 2039 vowels and diphthongs and 841 shortforms from three shorthand writers have demonstrated that the proposed solution is quite promising. The recognition accuracies for consonant outlines, vowels and diphthongs, and shortforms achieved 75.33%, 96.86% and 91.86%, respectively. From the evaluation of 461 outlines with smooth junction, the introduction of the new rule has a great positive effect on the performance of the solution. The recognition accuracy of smooth junction improves from 37.53% to 93.41% given a writing time increase of 14.42%.en
dc.languageenen
dc.publisherElsevier Ltden
dc.relation.ispartofPattern Recognitionen
dc.titleSegmentation and recognition of phonetic features in handwritten Pitman shorthanden
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.patcog.2007.10.014en
dc.subject.keywordsImage Processingen
dc.subject.keywordsPattern Recognition and Data Miningen
dc.subject.keywordsComputer Visionen
local.contributor.firstnameMaen
local.contributor.firstnameGrahamen
local.contributor.firstnameColinen
local.contributor.firstnameSwe Myoen
local.subject.for2008080104 Computer Visionen
local.subject.for2008080106 Image Processingen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.seo2008810107 National Securityen
local.subject.seo2008810199 Defence not elsewhere classifieden
local.subject.seo2008890299 Computer Software and Services not elsewhere classifieden
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolScience and Technologyen
local.profile.emailcleedham@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20100415-145138en
local.publisher.placeUnited Kingdomen
local.format.startpage1280en
local.format.endpage1294en
local.identifier.scopusid36749022172en
local.peerreviewedYesen
local.identifier.volume41en
local.identifier.issue4en
local.contributor.lastnameYangen
local.contributor.lastnameLeedhamen
local.contributor.lastnameHigginsen
local.contributor.lastnameHtween
dc.identifier.staffune-id:cleedhamen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:8647en
dc.identifier.academiclevelAcademicen
local.title.maintitleSegmentation and recognition of phonetic features in handwritten Pitman shorthanden
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorYang, Maen
local.search.authorLeedham, Grahamen
local.search.authorHiggins, Colinen
local.search.authorHtwe, Swe Myoen
local.uneassociationUnknownen
local.year.published2008en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

7
checked on Dec 14, 2024

Page view(s)

1,218
checked on Dec 29, 2024

Download(s)

2
checked on Dec 29, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.