Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/8396
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchmalz, Jelenaen
dc.contributor.authorGureyev, Timuren
dc.contributor.authorPaganin, Daviden
dc.contributor.authorPavlov, Konstantin Men
dc.date.accessioned2011-08-31T14:43:00Z-
dc.date.issued2011-
dc.identifier.citationPhysical Review A (Atomic, Molecular and Optical Physics), 84(2), p. 023808-1-023808-10en
dc.identifier.issn1094-1622en
dc.identifier.issn1050-2947en
dc.identifier.issn2469-9934en
dc.identifier.issn2469-9926en
dc.identifier.urihttps://hdl.handle.net/1959.11/8396-
dc.description.abstractAlthough originally developed for coherent paraxial scalar electromagnetic radiation in the visible-light regime, phase retrieval using the transport-of-intensity equation has been successfully applied to a range of paraxial radiation and matter-wave fields. Such applications include using electron wave fields to quantitatively image magnetic skyrmions and spin ices, propagation-based phase-contrast imaging using cold neutrons and hard x-rays, and visible-light refractive imaging of the projected column density of cold-atom clouds. Teague's method for phase retrieval using the transport-of-intensity equation, which renders the phase of a paraxial complex wave indirectly measurable via the existence of a conserved current, has been applied to a broad variety of situations which include all of the experiments described above. However, these applications have been undertaken without a thorough analysis of the underlying validity of the method. Here we derive sufficient conditions for the phase-retrieval solution provided by Teague's method to coincide with the true phase of the paraxial radiation or matter-wave field. We also present a sufficient condition guaranteeing that the discrepancy between the true phase function and that reconstructed using Teague's solution is small. These conditions demonstrate that, in most practical cases, for phase-amplitude retrieval using the transport-of-intensity equation, the Teague solution is very close to the exact solution. However, we also describe a counter example in the context of phase-amplitude retrieval using hard x-rays, in which the relative root-mean-square difference between the exact solution and that obtained using Teague's method is 9%. These findings clarify the foundations of one of the most widely applied methods for propagation-based phase retrieval of both paraxial matter and radiation wave fields and define a region for its applicability.en
dc.languageenen
dc.publisherAmerican Physical Societyen
dc.relation.ispartofPhysical Review A (Atomic, Molecular and Optical Physics)en
dc.titlePhase retrieval using radiation and matter-wave fields: Validity of Teague's method for solution of the transport-of-intensity equationen
dc.typeJournal Articleen
dc.identifier.doi10.1103/PhysRevA.84.023808en
dc.subject.keywordsCondensed Matter Imagingen
dc.subject.keywordsPhysical Sciencesen
dc.subject.keywordsOptical Physicsen
local.contributor.firstnameJelenaen
local.contributor.firstnameTimuren
local.contributor.firstnameDaviden
local.contributor.firstnameKonstantin Men
local.subject.for2008020599 Optical Physics not elsewhere classifieden
local.subject.for2008020402 Condensed Matter Imagingen
local.subject.for2008029999 Physical Sciences not elsewhere classifieden
local.subject.seo2008861502 Medical Instrumentsen
local.subject.seo2008861503 Scientific Instrumentsen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolPhysics and Electronics Engineeringen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailjschmalz@une.edu.auen
local.profile.emailtgureyev@une.edu.auen
local.profile.emailDavid.Paganin@monash.eduen
local.profile.emailkpavlov@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20110830-132521en
local.publisher.placeUnited States of Americaen
local.identifier.runningnumber023808en
local.format.startpage023808-1en
local.format.endpage023808-10en
local.identifier.scopusid80051635615en
local.peerreviewedYesen
local.identifier.volume84en
local.identifier.issue2en
local.title.subtitleValidity of Teague's method for solution of the transport-of-intensity equationen
local.contributor.lastnameSchmalzen
local.contributor.lastnameGureyeven
local.contributor.lastnamePaganinen
local.contributor.lastnamePavloven
dc.identifier.staffune-id:jschmalzen
dc.identifier.staffune-id:tgureyeven
dc.identifier.staffune-id:kpavloven
local.profile.orcid0000-0002-1103-0649en
local.profile.orcid0000-0002-1756-4406en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:8572en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitlePhase retrieval using radiation and matter-wave fieldsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSchmalz, Jelenaen
local.search.authorGureyev, Timuren
local.search.authorPaganin, Daviden
local.search.authorPavlov, Konstantin Men
local.uneassociationUnknownen
local.year.published2011en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

50
checked on Mar 9, 2024

Page view(s)

1,318
checked on Mar 10, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.