Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/8209
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHickey, Johnen
dc.contributor.authorKinghorn, Brianen
dc.contributor.authorTier, Bruceen
dc.contributor.authorWilson, J Fen
dc.contributor.authorDunstan, Neilen
dc.contributor.authorVan Der Werf, Julius Hen
dc.date.accessioned2011-07-27T10:32:00Z-
dc.date.issued2011-
dc.identifier.citationGenetics Selection Evolution, 43(1), p. 1-19en
dc.identifier.issn1297-9686en
dc.identifier.issn0999-193Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/8209-
dc.description.abstractBackground: Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data. Methods: A long-range phasing and haplotype library imputation algorithm was developed. It combines information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on the family structure of a dataset or on the presence of pedigree information. Results: The algorithm performed well in both simulated and real livestock and human datasets in terms of both phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure, presence or absence of pedigree information, and SNP density. The method was computationally fast. In comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational time are expected to be even greater. A computer program implementing these methods has been made available. Conclusions: The algorithm and software developed in this study make feasible the routine phasing of high-density SNP chips in large datasets.en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofGenetics Selection Evolutionen
dc.titleA combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypesen
dc.typeJournal Articleen
dc.identifier.doi10.1186/1297-9686-43-12en
dcterms.accessRightsGolden
dc.subject.keywordsAnimal Breedingen
local.contributor.firstnameJohnen
local.contributor.firstnameBrianen
local.contributor.firstnameBruceen
local.contributor.firstnameJ Fen
local.contributor.firstnameNeilen
local.contributor.firstnameJulius Hen
local.subject.for2008070201 Animal Breedingen
local.subject.seo2008830399 Livestock Raising not elsewhere classifieden
local.profile.schoolAgronomy and Soil Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.schoolAgronomy and Soil Scienceen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailjhickey5@une.edu.auen
local.profile.emailbkinghor@une.edu.auen
local.profile.emailbtier@une.edu.auen
local.profile.emailndunstan@une.edu.auen
local.profile.emailjvanderw@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20110326-140336en
local.publisher.placeUnited Kingdomen
local.identifier.runningnumberArticle 12en
local.format.startpage1en
local.format.endpage19en
local.identifier.scopusid79960051527en
local.peerreviewedYesen
local.identifier.volume43en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnameHickeyen
local.contributor.lastnameKinghornen
local.contributor.lastnameTieren
local.contributor.lastnameWilsonen
local.contributor.lastnameDunstanen
local.contributor.lastnameVan Der Werfen
dc.identifier.staffune-id:jhickey5en
dc.identifier.staffune-id:bkinghoren
dc.identifier.staffune-id:btieren
dc.identifier.staffune-id:ndunstanen
dc.identifier.staffune-id:jvanderwen
local.profile.orcid0000-0003-2512-1696en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:8384en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorHickey, Johnen
local.search.authorKinghorn, Brianen
local.search.authorTier, Bruceen
local.search.authorWilson, J Fen
local.search.authorDunstan, Neilen
local.search.authorVan Der Werf, Julius Hen
local.uneassociationUnknownen
local.identifier.wosid000288997100001en
local.year.published2011en
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

110
checked on Jun 29, 2024

Page view(s)

2,034
checked on Jul 7, 2024

Download(s)

2
checked on Jul 7, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.